Unveiling the Dance of Molecules: Rovibrational Dynamics of Molecules under Intense Illumination at Complex Plasmonic Interfaces.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2025-02-18 DOI:10.1021/acs.jctc.4c01652
Maxim Sukharev, Joseph E Subotnik, Abraham Nitzan
{"title":"Unveiling the Dance of Molecules: Rovibrational Dynamics of Molecules under Intense Illumination at Complex Plasmonic Interfaces.","authors":"Maxim Sukharev, Joseph E Subotnik, Abraham Nitzan","doi":"10.1021/acs.jctc.4c01652","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the quantum dynamics of strongly coupled molecule-cavity systems remains a significant challenge in molecular polaritonics. This work develops a comprehensive self-consistent model simulating electromagnetic interactions of diatomic molecules with quantum rovibrational degrees of freedom in resonant optical cavities. The approach employs an efficient numerical methodology to solve coupled Schrödinger-Maxwell equations in real spacetime, enabling three-dimensional simulations through a novel molecular mapping technique. The study investigates the relaxation dynamics of an ensemble of molecules following intense resonant pump excitation in Fabry-Perot cavities and at three-dimensional plasmonic metasurfaces. The simulations reveal dramatically modified relaxation pathways inside cavities compared to free space, characterized by persistent molecular alignment arising from cavity-induced rotational pumping. They also indicate the presence of a previously unreported relaxation stabilization mechanism driven by dephasing of the collective molecular-cavity mode. Additionally, the study demonstrates that strong molecular coupling significantly modifies the circular dichroism spectra of chiral metasurfaces, suggesting new opportunities for controlling light-matter interactions in quantum optical systems.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01652","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the quantum dynamics of strongly coupled molecule-cavity systems remains a significant challenge in molecular polaritonics. This work develops a comprehensive self-consistent model simulating electromagnetic interactions of diatomic molecules with quantum rovibrational degrees of freedom in resonant optical cavities. The approach employs an efficient numerical methodology to solve coupled Schrödinger-Maxwell equations in real spacetime, enabling three-dimensional simulations through a novel molecular mapping technique. The study investigates the relaxation dynamics of an ensemble of molecules following intense resonant pump excitation in Fabry-Perot cavities and at three-dimensional plasmonic metasurfaces. The simulations reveal dramatically modified relaxation pathways inside cavities compared to free space, characterized by persistent molecular alignment arising from cavity-induced rotational pumping. They also indicate the presence of a previously unreported relaxation stabilization mechanism driven by dephasing of the collective molecular-cavity mode. Additionally, the study demonstrates that strong molecular coupling significantly modifies the circular dichroism spectra of chiral metasurfaces, suggesting new opportunities for controlling light-matter interactions in quantum optical systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Decomposition Analysis for Visualization of Noncovalent Interactions Based on the Fragment Molecular Orbital Method. Unveiling the Dance of Molecules: Rovibrational Dynamics of Molecules under Intense Illumination at Complex Plasmonic Interfaces. Computational Approach to Phosphor-Sensitized Fluorescence Based on Monomer Transition Densities. Correction to "Comparing Self-Consistent GW and Vertex-Corrected G0W0 (G0W0Γ) Accuracy for Molecular Ionization Potentials". Efficient Simulation of Surface-Enhanced Raman Scattering with a Simplified Damped Response Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1