Artificial Intelligence in Lymphoma Histopathology: Systematic Review.

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Journal of Medical Internet Research Pub Date : 2025-02-14 DOI:10.2196/62851
Yao Fu, Zongyao Huang, Xudong Deng, Linna Xu, Yang Liu, Mingxing Zhang, Jinyi Liu, Bin Huang
{"title":"Artificial Intelligence in Lymphoma Histopathology: Systematic Review.","authors":"Yao Fu, Zongyao Huang, Xudong Deng, Linna Xu, Yang Liu, Mingxing Zhang, Jinyi Liu, Bin Huang","doi":"10.2196/62851","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) shows considerable promise in the areas of lymphoma diagnosis, prognosis, and gene prediction. However, a comprehensive assessment of potential biases and the clinical utility of AI models is still needed.</p><p><strong>Objective: </strong>Our goal was to evaluate the biases of published studies using AI models for lymphoma histopathology and assess the clinical utility of comprehensive AI models for diagnosis or prognosis.</p><p><strong>Methods: </strong>This study adhered to the Systematic Review Reporting Standards. A comprehensive literature search was conducted across PubMed, Cochrane Library, and Web of Science from their inception until August 30, 2024. The search criteria included the use of AI for prognosis involving human lymphoma tissue pathology images, diagnosis, gene mutation prediction, etc. The risk of bias was evaluated using the Prediction Model Risk of Bias Assessment Tool (PROBAST). Information for each AI model was systematically tabulated, and summary statistics were reported. The study is registered with PROSPERO (CRD42024537394) and follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 reporting guidelines.</p><p><strong>Results: </strong>The search identified 3565 records, with 41 articles ultimately meeting the inclusion criteria. A total of 41 AI models were included in the analysis, comprising 17 diagnostic models, 10 prognostic models, 2 models for detecting ectopic gene expression, and 12 additional models related to diagnosis. All studies exhibited a high or unclear risk of bias, primarily due to limited analysis and incomplete reporting of participant recruitment. Most high-risk models (10/41) predominantly assigned high-risk classifications to participants. Almost all the articles presented an unclear risk of bias in at least one domain, with the most frequent being participant selection (16/41) and statistical analysis (37/41). The primary reasons for this were insufficient analysis of participant recruitment and a lack of interpretability in outcome analyses. In the diagnostic models, the most frequently studied lymphoma subtypes were diffuse large B-cell lymphoma, follicular lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma, while in the prognostic models, the most common subtypes were diffuse large B-cell lymphoma, follicular lymphoma, chronic lymphocytic leukemia, and Hodgkin lymphoma. In the internal validation results of all models, the area under the receiver operating characteristic curve (AUC) ranged from 0.75 to 0.99 and accuracy ranged from 68.3% to 100%. In models with external validation results, the AUC ranged from 0.93 to 0.99.</p><p><strong>Conclusions: </strong>From a methodological perspective, all models exhibited biases. The enhancement of the accuracy of AI models and the acceleration of their clinical translation hinge on several critical aspects. These include the comprehensive reporting of data sources, the diversity of datasets, the study design, the transparency and interpretability of AI models, the use of cross-validation and external validation, and adherence to regulatory guidance and standardized processes in the field of medical AI.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e62851"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/62851","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Artificial intelligence (AI) shows considerable promise in the areas of lymphoma diagnosis, prognosis, and gene prediction. However, a comprehensive assessment of potential biases and the clinical utility of AI models is still needed.

Objective: Our goal was to evaluate the biases of published studies using AI models for lymphoma histopathology and assess the clinical utility of comprehensive AI models for diagnosis or prognosis.

Methods: This study adhered to the Systematic Review Reporting Standards. A comprehensive literature search was conducted across PubMed, Cochrane Library, and Web of Science from their inception until August 30, 2024. The search criteria included the use of AI for prognosis involving human lymphoma tissue pathology images, diagnosis, gene mutation prediction, etc. The risk of bias was evaluated using the Prediction Model Risk of Bias Assessment Tool (PROBAST). Information for each AI model was systematically tabulated, and summary statistics were reported. The study is registered with PROSPERO (CRD42024537394) and follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 reporting guidelines.

Results: The search identified 3565 records, with 41 articles ultimately meeting the inclusion criteria. A total of 41 AI models were included in the analysis, comprising 17 diagnostic models, 10 prognostic models, 2 models for detecting ectopic gene expression, and 12 additional models related to diagnosis. All studies exhibited a high or unclear risk of bias, primarily due to limited analysis and incomplete reporting of participant recruitment. Most high-risk models (10/41) predominantly assigned high-risk classifications to participants. Almost all the articles presented an unclear risk of bias in at least one domain, with the most frequent being participant selection (16/41) and statistical analysis (37/41). The primary reasons for this were insufficient analysis of participant recruitment and a lack of interpretability in outcome analyses. In the diagnostic models, the most frequently studied lymphoma subtypes were diffuse large B-cell lymphoma, follicular lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma, while in the prognostic models, the most common subtypes were diffuse large B-cell lymphoma, follicular lymphoma, chronic lymphocytic leukemia, and Hodgkin lymphoma. In the internal validation results of all models, the area under the receiver operating characteristic curve (AUC) ranged from 0.75 to 0.99 and accuracy ranged from 68.3% to 100%. In models with external validation results, the AUC ranged from 0.93 to 0.99.

Conclusions: From a methodological perspective, all models exhibited biases. The enhancement of the accuracy of AI models and the acceleration of their clinical translation hinge on several critical aspects. These include the comprehensive reporting of data sources, the diversity of datasets, the study design, the transparency and interpretability of AI models, the use of cross-validation and external validation, and adherence to regulatory guidance and standardized processes in the field of medical AI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
期刊最新文献
Authors' Reply: Enhancing the Clinical Relevance of Al Research for Medication Decision-Making. Enhancing the Clinical Relevance of Al Research for Medication Decision-Making. User Personas for eHealth Regarding the Self-Management of Depressive Symptoms in People Living With HIV: Mixed Methods Study. A New Computer-Based Cognitive Measure for Early Detection of Dementia Risk (Japan Cognitive Function Test): Validation Study. Artificial Intelligence in Lymphoma Histopathology: Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1