Gene Therapy for Hearing Loss: Which Genes Next?

IF 1.9 3区 医学 Q3 CLINICAL NEUROLOGY Otology & Neurotology Pub Date : 2025-03-01 DOI:10.1097/MAO.0000000000004423
Ryan J Carlson, Shahar Taiber, Jay T Rubinstein
{"title":"Gene Therapy for Hearing Loss: Which Genes Next?","authors":"Ryan J Carlson, Shahar Taiber, Jay T Rubinstein","doi":"10.1097/MAO.0000000000004423","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hearing loss is the most common sensory deficit in humans, and roughly half of childhood-onset sensorineural hearing loss is genetic. Advances in gene therapy techniques have led to the first clinical trials for OTOF-associated hearing loss DFNB9. Therapies for other hearing loss genes are in various stages of development, and therefore a comprehensive evaluation of potential candidate genes can help to prioritize and guide these efforts.</p><p><strong>Methods: </strong>A list of 93 nonsyndromic hearing loss genes with consensus support was generated. Critical factors for evaluation were identified as gene size, timing of cochlear degradation, cell type(s) of primary expression, availability of mouse models and efficacy of adeno-associated virus experiments in those mice, and human hearing loss severity, onset, and prevalence. Each factor was addressed with gene-specific PubMed searches for applicable studies.</p><p><strong>Results: </strong>Each gene was evaluated according to the above factors, with favorable results indicating the most promising candidates for gene therapy. Genes that satisfied all the above conditions included TMPRSS3, PCDH15, and TMC1. Other genes, such as LOXHD1 and MYO6, had not yet had gene replacement attempts in a mouse model but otherwise satisfied all conditions and were likewise identified as promising candidates.</p><p><strong>Conclusion: </strong>Based on this analysis, hearing loss genes vary widely in terms of their favorability for treatment by gene therapy approaches. Targeting development efforts to promising candidates will ensure the highest likelihood of clinical success. Several genes were identified as appealing next targets, signaling an increasing role of gene therapies in hearing loss care moving forward.</p>","PeriodicalId":19732,"journal":{"name":"Otology & Neurotology","volume":"46 3","pages":"239-247"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Otology & Neurotology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MAO.0000000000004423","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Hearing loss is the most common sensory deficit in humans, and roughly half of childhood-onset sensorineural hearing loss is genetic. Advances in gene therapy techniques have led to the first clinical trials for OTOF-associated hearing loss DFNB9. Therapies for other hearing loss genes are in various stages of development, and therefore a comprehensive evaluation of potential candidate genes can help to prioritize and guide these efforts.

Methods: A list of 93 nonsyndromic hearing loss genes with consensus support was generated. Critical factors for evaluation were identified as gene size, timing of cochlear degradation, cell type(s) of primary expression, availability of mouse models and efficacy of adeno-associated virus experiments in those mice, and human hearing loss severity, onset, and prevalence. Each factor was addressed with gene-specific PubMed searches for applicable studies.

Results: Each gene was evaluated according to the above factors, with favorable results indicating the most promising candidates for gene therapy. Genes that satisfied all the above conditions included TMPRSS3, PCDH15, and TMC1. Other genes, such as LOXHD1 and MYO6, had not yet had gene replacement attempts in a mouse model but otherwise satisfied all conditions and were likewise identified as promising candidates.

Conclusion: Based on this analysis, hearing loss genes vary widely in terms of their favorability for treatment by gene therapy approaches. Targeting development efforts to promising candidates will ensure the highest likelihood of clinical success. Several genes were identified as appealing next targets, signaling an increasing role of gene therapies in hearing loss care moving forward.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Otology & Neurotology
Otology & Neurotology 医学-耳鼻喉科学
CiteScore
3.80
自引率
14.30%
发文量
509
审稿时长
3-6 weeks
期刊介绍: ​​​​​Otology & Neurotology publishes original articles relating to both clinical and basic science aspects of otology, neurotology, and cranial base surgery. As the foremost journal in its field, it has become the favored place for publishing the best of new science relating to the human ear and its diseases. The broadly international character of its contributing authors, editorial board, and readership provides the Journal its decidedly global perspective.
期刊最新文献
Access to Ear and Hearing Care Globally: A Survey of Stakeholder Perceptions from the Lancet Commission on Global Hearing Loss. American Neurotology Society 60th Annual Spring Meeting Scientific Program May 16-17, 2025 New Orleans, LA: (ANS posters will be displayed on Friday & Saturday). AMERICAN OTOLOGICAL SOCIETY PRELIMINARY PROGRAM 158th Annual Meeting May 16-18, 2025 New Orleans, LA: (AOS Posters will be displayed on Friday and Saturday). Gene Therapy for Hearing Loss: Which Genes Next? Amplitude and Phase Changes in Electrocochleographic Real-Time Recordings During Cochlear Implantation and Its Relation to Pre- and Postoperative Hearing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1