Jeremy T Young, Edwin Chaparro, Asier Piñeiro Orioli, James K Thompson, Ana Maria Rey
{"title":"Engineering One Axis Twisting via a Dissipative Berry Phase Using Strong Symmetries.","authors":"Jeremy T Young, Edwin Chaparro, Asier Piñeiro Orioli, James K Thompson, Ana Maria Rey","doi":"10.1103/PhysRevLett.134.040801","DOIUrl":null,"url":null,"abstract":"<p><p>We show how a driven-dissipative cavity coupled to a collective ensemble of atoms can dynamically generate metrologically useful spin-squeezed states. In contrast to other dissipative approaches, we do not rely on complex engineered dissipation or input states, nor do we require tuning the system to a critical point. Instead, we utilize a strong symmetry, a special type of symmetry that can occur in open quantum systems and emerges naturally in systems with collective dissipation, such as superradiance. This symmetry preserves coherence and allows for the accumulation of an atom number-dependent Berry phase which in turn creates spin-squeezed states via emergent one axis twisting dynamics. This work shows that it is possible to generate entanglement in an atom-cavity resonant regime with macroscopic optical excitations of the system, going beyond the typical dispersive regime with negligible optical excitations often utilized in current cavity-QED experiments.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 4","pages":"040801"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.040801","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We show how a driven-dissipative cavity coupled to a collective ensemble of atoms can dynamically generate metrologically useful spin-squeezed states. In contrast to other dissipative approaches, we do not rely on complex engineered dissipation or input states, nor do we require tuning the system to a critical point. Instead, we utilize a strong symmetry, a special type of symmetry that can occur in open quantum systems and emerges naturally in systems with collective dissipation, such as superradiance. This symmetry preserves coherence and allows for the accumulation of an atom number-dependent Berry phase which in turn creates spin-squeezed states via emergent one axis twisting dynamics. This work shows that it is possible to generate entanglement in an atom-cavity resonant regime with macroscopic optical excitations of the system, going beyond the typical dispersive regime with negligible optical excitations often utilized in current cavity-QED experiments.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks