Landau-Level Mixing and SU(4) Symmetry Breaking in Graphene.

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical review letters Pub Date : 2025-01-31 DOI:10.1103/PhysRevLett.134.046501
Nemin Wei, Guopeng Xu, Inti Sodemann Villadiego, Chunli Huang
{"title":"Landau-Level Mixing and SU(4) Symmetry Breaking in Graphene.","authors":"Nemin Wei, Guopeng Xu, Inti Sodemann Villadiego, Chunli Huang","doi":"10.1103/PhysRevLett.134.046501","DOIUrl":null,"url":null,"abstract":"<p><p>Recent scanning tunneling microscopy experiments on graphene at charge neutrality under strong magnetic fields have uncovered a ground state characterized by Kekulé distortion (KD). In contrast, nonlocal spin and charge transport experiments in double-encapsulated graphene, which has a higher dielectric constant, have identified an antiferromagnetic (AF) ground state. We propose a mechanism to reconcile these conflicting observations by showing that Landau-level mixing can drive a transition from AF to KD with the reduction of the dielectric screening. Our conclusion is drawn from studying the effect of Landau-level mixing on the lattice-scale, valley-dependent interactions to leading order in graphene's fine structure constant κ=e^{2}/(ℏv_{F}ε). This analysis provides three key insights: (1) valley-dependent interactions remain predominantly short-range with the m=0 Haldane pseudopotential being at least an order of magnitude greater than the others, affirming the validity of delta-function approximation for these interactions. (2) The phase transition between the AF and KD states is driven by the microscopic process in the double-exchange Feynman diagram. (3) The magnitudes of the coupling constants are significantly boosted by remote Landau levels. Our model also provides a theoretical basis for numerical studies of fractional quantum Hall states in graphene.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 4","pages":"046501"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.046501","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent scanning tunneling microscopy experiments on graphene at charge neutrality under strong magnetic fields have uncovered a ground state characterized by Kekulé distortion (KD). In contrast, nonlocal spin and charge transport experiments in double-encapsulated graphene, which has a higher dielectric constant, have identified an antiferromagnetic (AF) ground state. We propose a mechanism to reconcile these conflicting observations by showing that Landau-level mixing can drive a transition from AF to KD with the reduction of the dielectric screening. Our conclusion is drawn from studying the effect of Landau-level mixing on the lattice-scale, valley-dependent interactions to leading order in graphene's fine structure constant κ=e^{2}/(ℏv_{F}ε). This analysis provides three key insights: (1) valley-dependent interactions remain predominantly short-range with the m=0 Haldane pseudopotential being at least an order of magnitude greater than the others, affirming the validity of delta-function approximation for these interactions. (2) The phase transition between the AF and KD states is driven by the microscopic process in the double-exchange Feynman diagram. (3) The magnitudes of the coupling constants are significantly boosted by remote Landau levels. Our model also provides a theoretical basis for numerical studies of fractional quantum Hall states in graphene.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
期刊最新文献
First Measurement of the Neutron-Emission Probability with a Surrogate Reaction in Inverse Kinematics at a Heavy-Ion Storage Ring Supersymmetric Localization and Nonconformal N=2 Supersymmetric Yang-Mills Theories in the Perturbative Regime Sensitivity of JWST to eV-Scale Decaying Axion Dark Matter All Planar Two-Loop Amplitudes in Maximally Supersymmetric Yang-Mills Theory Plasmon-Enhanced Direct-Detection Method for Boosted Sub-MeV Dark Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1