Effects of Metarhizium anisopliae on lethality, transfer, behavior, and physiology in Eucryptorrhynchus scrobiculatus and E. brandti (Coleoptera: Curculionidae).
{"title":"Effects of Metarhizium anisopliae on lethality, transfer, behavior, and physiology in Eucryptorrhynchus scrobiculatus and E. brandti (Coleoptera: Curculionidae).","authors":"Xuewen Sun, Chao Wen, Danhui Yang, Genzhuang Zhang, Bohan Zhang, Junbao Wen","doi":"10.1093/jee/toaf007","DOIUrl":null,"url":null,"abstract":"<p><p>Eucryptorrhynchus scrobiculatus (Motschulsky) and E. brandti (Harold) are 2 serious pests inflicting damage on Ailanthus altissima (Mill.) Swingle. In the field, these species exhibit aggregation behavior. We hypothesized that this behavior facilitated the contact and horizontal transfer of Metarhizium anisopliae (Metschn.) Sorokin in weevil species. Little or no mortality in both E. scrobiculatus and E. brandti adult individuals exposed to low concentrations M. anisopliae (1 × 105, 1 × 106 conidia/ml). A mortality rate of 100% was observed in both E. scrobiculatus and E. brandti adults after 3 and 5 d of treatment with M. anisopliae at concentrations of 1 × 109 and 1 × 108 conidia/ml. The aggregation behavior of E. scrobiculatus and E. brandti adults was unaffected by M. anisopliae. In the transfer test of M. anisopliae, the mortality rate of recipients mixed with donors treated with M. anisopliae conidia was significantly higher compared to untreated donors and control recipients in laboratory and field experiments. Furthermore, the mortality of secondary recipients in both E. scrobiculatus and E. brandti was significantly higher than that of the control group. The findings suggested that horizontal transfer of M. anisopliae occurred in both species, which was further supported by microscopy observation and the activity of immune-related enzymes in the donor, recipient, and secondary recipient. Our findings demonstrated a specific method for improving pest control by combining aggregation behavior with the use of biopesticides, thereby enhancing the understanding of biological management strategies.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toaf007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Eucryptorrhynchus scrobiculatus (Motschulsky) and E. brandti (Harold) are 2 serious pests inflicting damage on Ailanthus altissima (Mill.) Swingle. In the field, these species exhibit aggregation behavior. We hypothesized that this behavior facilitated the contact and horizontal transfer of Metarhizium anisopliae (Metschn.) Sorokin in weevil species. Little or no mortality in both E. scrobiculatus and E. brandti adult individuals exposed to low concentrations M. anisopliae (1 × 105, 1 × 106 conidia/ml). A mortality rate of 100% was observed in both E. scrobiculatus and E. brandti adults after 3 and 5 d of treatment with M. anisopliae at concentrations of 1 × 109 and 1 × 108 conidia/ml. The aggregation behavior of E. scrobiculatus and E. brandti adults was unaffected by M. anisopliae. In the transfer test of M. anisopliae, the mortality rate of recipients mixed with donors treated with M. anisopliae conidia was significantly higher compared to untreated donors and control recipients in laboratory and field experiments. Furthermore, the mortality of secondary recipients in both E. scrobiculatus and E. brandti was significantly higher than that of the control group. The findings suggested that horizontal transfer of M. anisopliae occurred in both species, which was further supported by microscopy observation and the activity of immune-related enzymes in the donor, recipient, and secondary recipient. Our findings demonstrated a specific method for improving pest control by combining aggregation behavior with the use of biopesticides, thereby enhancing the understanding of biological management strategies.