2-form U(1) spin liquids: A classical model and quantum aspects

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2025-02-13 DOI:10.1103/physrevb.111.064417
Kristian Tyn Kai Chung, Michel J. P. Gingras
{"title":"2-form U(1) spin liquids: A classical model and quantum aspects","authors":"Kristian Tyn Kai Chung, Michel J. P. Gingras","doi":"10.1103/physrevb.111.064417","DOIUrl":null,"url":null,"abstract":"We introduce a geometrically frustrated classical Ising model, dubbed the “spin-vorticity model,” whose ground-state manifold is a classical spin liquid: a 2-form Coulomb phase. We study the thermodynamics of this model both analytically and numerically, exposing the presence of algebraically decaying correlations and an extensive ground-state entropy, and give a comprehensive account of its ground-state properties and excitations. Each classical ground state may be decomposed into collections of closed two-dimensional membranes, supporting fractionalized string excitations attached to the edges of open membranes. At finite temperature, the model can then be described as a gas of closed strings in a background of fluctuating membranes. The emergent gauge structure of this spin liquid is naturally placed in the language of 2-form electrodynamics, which describes one-dimensional charged strings coupled to a rank-2 antisymmetric gauge field. After establishing the classical spin-vorticity model, we consider perturbing it with quantum exchange interactions, deriving an effective “membrane exchange” model of the quantum dynamics, analogous to ring exchange in quantum spin ice. We demonstrate the existence of a Rokhsar-Kivelson point where the quantum ground state is an equal-weight superposition of all classical ground-state configurations, i.e., a quantum spin liquid. The quantum aspects of this spin liquid are exposed by mapping the membrane exchange model to a strongly coupled frustrated 2-form U(1) lattice gauge theory. We further demonstrate how to quantize the string excitations by coupling a 1-form string field to the 2-form U(1) gauge field, thus mapping a quantum spin model to a 2-form U(1) gauge-Higgs model. We discuss the stability of the gapless deconfined phase of this gauge theory and the possibility of realizing a class of quantum phases of matter: 2-form U(1) quantum spin liquids. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"42 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.064417","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a geometrically frustrated classical Ising model, dubbed the “spin-vorticity model,” whose ground-state manifold is a classical spin liquid: a 2-form Coulomb phase. We study the thermodynamics of this model both analytically and numerically, exposing the presence of algebraically decaying correlations and an extensive ground-state entropy, and give a comprehensive account of its ground-state properties and excitations. Each classical ground state may be decomposed into collections of closed two-dimensional membranes, supporting fractionalized string excitations attached to the edges of open membranes. At finite temperature, the model can then be described as a gas of closed strings in a background of fluctuating membranes. The emergent gauge structure of this spin liquid is naturally placed in the language of 2-form electrodynamics, which describes one-dimensional charged strings coupled to a rank-2 antisymmetric gauge field. After establishing the classical spin-vorticity model, we consider perturbing it with quantum exchange interactions, deriving an effective “membrane exchange” model of the quantum dynamics, analogous to ring exchange in quantum spin ice. We demonstrate the existence of a Rokhsar-Kivelson point where the quantum ground state is an equal-weight superposition of all classical ground-state configurations, i.e., a quantum spin liquid. The quantum aspects of this spin liquid are exposed by mapping the membrane exchange model to a strongly coupled frustrated 2-form U(1) lattice gauge theory. We further demonstrate how to quantize the string excitations by coupling a 1-form string field to the 2-form U(1) gauge field, thus mapping a quantum spin model to a 2-form U(1) gauge-Higgs model. We discuss the stability of the gapless deconfined phase of this gauge theory and the possibility of realizing a class of quantum phases of matter: 2-form U(1) quantum spin liquids. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Strong effects of thermally induced low-spin to high-spin crossover on transport properties of correlated metals Paramagnetic fluctuations of the magnetocaloric compound MnFe4Si3 Quasiparticle wave function and its equation of motion Low-temperature magnetic behavior on the triangular lattice in hexagonal Ba3Tb(BO3)3 Current noise in quantum dot thermoelectric engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1