Haoran Xu, Kang Wei, Jinhao Ni, Xiaofeng Deng, Yuexing Wang, Taiyang Xiang, Fanglong Song, Qianliang Wang, Yanping Niu, Fengxian Jiang, Jun Wang, Lei Sheng, Jun Dai
{"title":"Matrix stiffness regulates nucleus pulposus cell glycolysis by MRTF-A-dependent mechanotransduction","authors":"Haoran Xu, Kang Wei, Jinhao Ni, Xiaofeng Deng, Yuexing Wang, Taiyang Xiang, Fanglong Song, Qianliang Wang, Yanping Niu, Fengxian Jiang, Jun Wang, Lei Sheng, Jun Dai","doi":"10.1038/s41413-025-00402-7","DOIUrl":null,"url":null,"abstract":"<p>Increased matrix stiffness of nucleus pulposus (NP) tissue is a main feature of intervertebral disc degeneration (IVDD) and affects various functions of nucleus pulposus cells (NPCs). Glycolysis is the main energy source for NPC survival, but the effects and underlying mechanisms of increased extracellular matrix (ECM) stiffness on NPC glycolysis remain unknown. In this study, hydrogels with different stiffness were established to mimic the mechanical environment of NPCs. Notably, increased matrix stiffness in degenerated NP tissues from IVDD patients was accompanied with impaired glycolysis, and NPCs cultured on rigid substrates exhibited a reduction in glycolysis. Meanwhile, RNA sequencing analysis showed altered cytoskeleton-related gene expression in NPCs on rigid substrates. Myocardin-related transcription factor A (MRTF-A) is a transcriptional coactivator in mechanotransduction mainly responding to cytoskeleton remodeling, which was activated and translocated to the nucleus under rigid substrate and was upregulated during IVDD progression. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed that MRTF-A overexpression reduced NPC glycolytic metabolite abundance and identified a correlation with AMPK pathway. Mechanistically, rigid substrates and MRTF-A overexpression inhibited Kidins220 expression and AMPK phosphorylation in NPCs, whereas MRTF-A inhibition, treated with the MRTF-A inhibitor CCG, partially rescued NP tissue degeneration and glycolytic enzyme expression. Our data demonstrate that MRTF-A is a critical regulator that responds to increased matrix stiffness in IVDD, and MRTF-A activation reduces NPC glycolysis by down-regulating Kidins220 and inhibiting AMPK phosphorylation.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"66 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00402-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Increased matrix stiffness of nucleus pulposus (NP) tissue is a main feature of intervertebral disc degeneration (IVDD) and affects various functions of nucleus pulposus cells (NPCs). Glycolysis is the main energy source for NPC survival, but the effects and underlying mechanisms of increased extracellular matrix (ECM) stiffness on NPC glycolysis remain unknown. In this study, hydrogels with different stiffness were established to mimic the mechanical environment of NPCs. Notably, increased matrix stiffness in degenerated NP tissues from IVDD patients was accompanied with impaired glycolysis, and NPCs cultured on rigid substrates exhibited a reduction in glycolysis. Meanwhile, RNA sequencing analysis showed altered cytoskeleton-related gene expression in NPCs on rigid substrates. Myocardin-related transcription factor A (MRTF-A) is a transcriptional coactivator in mechanotransduction mainly responding to cytoskeleton remodeling, which was activated and translocated to the nucleus under rigid substrate and was upregulated during IVDD progression. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed that MRTF-A overexpression reduced NPC glycolytic metabolite abundance and identified a correlation with AMPK pathway. Mechanistically, rigid substrates and MRTF-A overexpression inhibited Kidins220 expression and AMPK phosphorylation in NPCs, whereas MRTF-A inhibition, treated with the MRTF-A inhibitor CCG, partially rescued NP tissue degeneration and glycolytic enzyme expression. Our data demonstrate that MRTF-A is a critical regulator that responds to increased matrix stiffness in IVDD, and MRTF-A activation reduces NPC glycolysis by down-regulating Kidins220 and inhibiting AMPK phosphorylation.
期刊介绍:
Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.