Matrix stiffness regulates nucleus pulposus cell glycolysis by MRTF-A-dependent mechanotransduction

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING Bone Research Pub Date : 2025-02-14 DOI:10.1038/s41413-025-00402-7
Haoran Xu, Kang Wei, Jinhao Ni, Xiaofeng Deng, Yuexing Wang, Taiyang Xiang, Fanglong Song, Qianliang Wang, Yanping Niu, Fengxian Jiang, Jun Wang, Lei Sheng, Jun Dai
{"title":"Matrix stiffness regulates nucleus pulposus cell glycolysis by MRTF-A-dependent mechanotransduction","authors":"Haoran Xu, Kang Wei, Jinhao Ni, Xiaofeng Deng, Yuexing Wang, Taiyang Xiang, Fanglong Song, Qianliang Wang, Yanping Niu, Fengxian Jiang, Jun Wang, Lei Sheng, Jun Dai","doi":"10.1038/s41413-025-00402-7","DOIUrl":null,"url":null,"abstract":"<p>Increased matrix stiffness of nucleus pulposus (NP) tissue is a main feature of intervertebral disc degeneration (IVDD) and affects various functions of nucleus pulposus cells (NPCs). Glycolysis is the main energy source for NPC survival, but the effects and underlying mechanisms of increased extracellular matrix (ECM) stiffness on NPC glycolysis remain unknown. In this study, hydrogels with different stiffness were established to mimic the mechanical environment of NPCs. Notably, increased matrix stiffness in degenerated NP tissues from IVDD patients was accompanied with impaired glycolysis, and NPCs cultured on rigid substrates exhibited a reduction in glycolysis. Meanwhile, RNA sequencing analysis showed altered cytoskeleton-related gene expression in NPCs on rigid substrates. Myocardin-related transcription factor A (MRTF-A) is a transcriptional coactivator in mechanotransduction mainly responding to cytoskeleton remodeling, which was activated and translocated to the nucleus under rigid substrate and was upregulated during IVDD progression. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed that MRTF-A overexpression reduced NPC glycolytic metabolite abundance and identified a correlation with AMPK pathway. Mechanistically, rigid substrates and MRTF-A overexpression inhibited Kidins220 expression and AMPK phosphorylation in NPCs, whereas MRTF-A inhibition, treated with the MRTF-A inhibitor CCG, partially rescued NP tissue degeneration and glycolytic enzyme expression. Our data demonstrate that MRTF-A is a critical regulator that responds to increased matrix stiffness in IVDD, and MRTF-A activation reduces NPC glycolysis by down-regulating Kidins220 and inhibiting AMPK phosphorylation.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"66 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00402-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Increased matrix stiffness of nucleus pulposus (NP) tissue is a main feature of intervertebral disc degeneration (IVDD) and affects various functions of nucleus pulposus cells (NPCs). Glycolysis is the main energy source for NPC survival, but the effects and underlying mechanisms of increased extracellular matrix (ECM) stiffness on NPC glycolysis remain unknown. In this study, hydrogels with different stiffness were established to mimic the mechanical environment of NPCs. Notably, increased matrix stiffness in degenerated NP tissues from IVDD patients was accompanied with impaired glycolysis, and NPCs cultured on rigid substrates exhibited a reduction in glycolysis. Meanwhile, RNA sequencing analysis showed altered cytoskeleton-related gene expression in NPCs on rigid substrates. Myocardin-related transcription factor A (MRTF-A) is a transcriptional coactivator in mechanotransduction mainly responding to cytoskeleton remodeling, which was activated and translocated to the nucleus under rigid substrate and was upregulated during IVDD progression. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed that MRTF-A overexpression reduced NPC glycolytic metabolite abundance and identified a correlation with AMPK pathway. Mechanistically, rigid substrates and MRTF-A overexpression inhibited Kidins220 expression and AMPK phosphorylation in NPCs, whereas MRTF-A inhibition, treated with the MRTF-A inhibitor CCG, partially rescued NP tissue degeneration and glycolytic enzyme expression. Our data demonstrate that MRTF-A is a critical regulator that responds to increased matrix stiffness in IVDD, and MRTF-A activation reduces NPC glycolysis by down-regulating Kidins220 and inhibiting AMPK phosphorylation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
期刊最新文献
Matrix stiffness regulates nucleus pulposus cell glycolysis by MRTF-A-dependent mechanotransduction Photothermal sensitive nanocomposite hydrogel for infectious bone defects Golgi-restored vesicular replenishment retards bone aging and empowers aging bone regeneration Nuclear farnesoid X receptor protects against bone loss by driving osteoblast differentiation through stabilizing RUNX2 Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1