首页 > 最新文献

Bone Research最新文献

英文 中文
KMT2A regulates the autophagy-GATA4 axis through METTL3-mediated m6A modification of ATG4a to promote NPCs senescence and IVDD progression KMT2A 通过 METTL3 介导的 ATG4a m6A 修饰调节自噬-GATA4 轴,从而促进鼻咽癌的衰老和 IVDD 的进展
IF 12.7 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-11-21 DOI: 10.1038/s41413-024-00373-1
Ouqiang Wu, Yuxin Jin, Zhiguang Zhang, Hao Zhou, Wenbin Xu, Linjie Chen, Morgan Jones, Kenny Yat Hong Kwan, Jianyuan Gao, Kai Zhang, Xiaofei Cheng, Qizhu Chen, Xinzhou Wang, Yan Michael Li, Zhenyu Guo, Jing Sun, Zhihua Chen, Bin Wang, Xiangyang Wang, Shuying Shen, Aimin Wu

Intervertebral disc degeneration (IVDD), a disease associated with ageing, is characterised by a notable increase in senescent nucleus pulposus cells (NPCs) as IVDD progresses. However, the specific mechanisms that regulate the senescence of NPCs remain unknown. In this study, we observed impaired autophagy in IVDD-NPCs, which contributed to the upregulation of NPCs senescence and the senescence-associated secretory phenotype (SASP). The dysregulated SASP disrupted NPCs viability and initiated extracellular matrix degradation. Conversely, the restoration of autophagy reversed the senescence phenotype by inhibiting GATA binding protein 4 (GATA4). Moreover, we made the novel observation that a cross-talk between histone H3 lysine 4 trimethylation (H3K4me3) modification and N6-methyladenosine(m6A)-methylated modification regulates autophagy in IVDD-NPCs. Mechanistically, lysine methyltransferase 2A (KMT2A) promoted the expression of methyltransferase-like 3 (METTL3) through H3K4me3 modification, whereas METTL3-mediated m6A modification reduced the expression of autophagy-associated 4a (ATG4a) by attenuating its RNA stability, leading to autophagy damage in NPCs. Silencing KMT2A and METTL3 enhanced autophagic flux and suppressed SASP expression in IVDD-NPCs. Therefore, targeting the H3K4me3-regulated METTL3/ATG4a/GATA4 axis may represent a promising new therapeutic strategy for IVDD.

椎间盘变性(IVDD)是一种与衰老相关的疾病,其特点是随着 IVDD 的发展,衰老的髓核细胞(NPC)会明显增加。然而,调控 NPCs 衰老的具体机制仍然未知。在本研究中,我们观察到IVDD-NPCs的自噬功能受损,这导致了NPCs衰老和衰老相关分泌表型(SASP)的上调。失调的SASP破坏了NPC的活力,并引发细胞外基质降解。相反,通过抑制 GATA 结合蛋白 4 (GATA4),恢复自噬可逆转衰老表型。此外,我们还新发现组蛋白H3赖氨酸4三甲基化(H3K4me3)修饰与N6-甲基腺苷(m6A)甲基化修饰之间的交叉作用调节了IVDD-NPCs的自噬。从机理上讲,赖氨酸甲基转移酶2A(KMT2A)通过H3K4me3修饰促进甲基转移酶样3(METTL3)的表达,而METTL3介导的m6A修饰则通过削弱自噬相关4a(ATG4a)的RNA稳定性而降低其表达,从而导致NPCs的自噬损伤。沉默KMT2A和METTL3可增强IVDD-鼻咽癌中的自噬通量并抑制SASP的表达。因此,靶向H3K4me3调控的METTL3/ATG4a/GATA4轴可能是治疗IVDD的一种有前途的新策略。
{"title":"KMT2A regulates the autophagy-GATA4 axis through METTL3-mediated m6A modification of ATG4a to promote NPCs senescence and IVDD progression","authors":"Ouqiang Wu, Yuxin Jin, Zhiguang Zhang, Hao Zhou, Wenbin Xu, Linjie Chen, Morgan Jones, Kenny Yat Hong Kwan, Jianyuan Gao, Kai Zhang, Xiaofei Cheng, Qizhu Chen, Xinzhou Wang, Yan Michael Li, Zhenyu Guo, Jing Sun, Zhihua Chen, Bin Wang, Xiangyang Wang, Shuying Shen, Aimin Wu","doi":"10.1038/s41413-024-00373-1","DOIUrl":"https://doi.org/10.1038/s41413-024-00373-1","url":null,"abstract":"<p>Intervertebral disc degeneration (IVDD), a disease associated with ageing, is characterised by a notable increase in senescent nucleus pulposus cells (NPCs) as IVDD progresses. However, the specific mechanisms that regulate the senescence of NPCs remain unknown. In this study, we observed impaired autophagy in IVDD-NPCs, which contributed to the upregulation of NPCs senescence and the senescence-associated secretory phenotype (SASP). The dysregulated SASP disrupted NPCs viability and initiated extracellular matrix degradation. Conversely, the restoration of autophagy reversed the senescence phenotype by inhibiting GATA binding protein 4 (GATA4). Moreover, we made the novel observation that a cross-talk between histone H3 lysine 4 trimethylation (H3K4me3) modification and N6-methyladenosine(m<sup>6</sup>A)-methylated modification regulates autophagy in IVDD-NPCs. Mechanistically, lysine methyltransferase 2A (KMT2A) promoted the expression of methyltransferase-like 3 (METTL3) through H3K4me3 modification, whereas METTL3-mediated m<sup>6</sup>A modification reduced the expression of autophagy-associated 4a (ATG4a) by attenuating its RNA stability, leading to autophagy damage in NPCs. Silencing KMT2A and METTL3 enhanced autophagic flux and suppressed SASP expression in IVDD-NPCs. Therefore, targeting the H3K4me3-regulated METTL3/ATG4a/GATA4 axis may represent a promising new therapeutic strategy for IVDD.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"33 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering bone/cartilage organoids: strategy, progress, and application 骨/软骨有机体工程:战略、进展与应用
IF 12.7 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-11-20 DOI: 10.1038/s41413-024-00376-y
Long Bai, Dongyang Zhou, Guangfeng Li, Jinlong Liu, Xiao Chen, Jiacan Su

The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.

骨/软骨器官组织的概念和发展势头迅猛,为骨生物学的基础研究和转化研究提供了机会。骨/软骨器官组织本质上是体外生长的微型骨/软骨组织,可在具有代表性和可控的环境中研究复杂的细胞相互作用、生物过程和疾病病理。本综述全面概述了该领域的最新情况,重点介绍了骨/软骨类器官的构建策略、研究进展和潜在应用。我们深入探讨了选择适当细胞、基质凝胶、细胞因子/诱导剂和构建技术的意义。此外,我们还探讨了骨/软骨器官组织在促进我们对骨/软骨重建、疾病建模、药物筛选、疾病预防和治疗策略的理解方面的作用。在承认这些类器官潜力的同时,我们也讨论了该领域固有的挑战和局限性,并提出了潜在的解决方案,包括使用生物打印技术诱导类器官、利用人工智能改进筛选过程,以及探索将组装体用于更复杂的多细胞骨/软骨类器官模型。我们相信,通过不断完善和标准化,骨/软骨类器官可以对特定患者的治疗干预产生深远影响,并引领再生医学的发展方向。
{"title":"Engineering bone/cartilage organoids: strategy, progress, and application","authors":"Long Bai, Dongyang Zhou, Guangfeng Li, Jinlong Liu, Xiao Chen, Jiacan Su","doi":"10.1038/s41413-024-00376-y","DOIUrl":"https://doi.org/10.1038/s41413-024-00376-y","url":null,"abstract":"<p>The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.</p><figure></figure>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"99 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone loss with aging is independent of gut microbiome in mice 小鼠骨质随着年龄增长而流失与肠道微生物群无关
IF 12.7 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-11-11 DOI: 10.1038/s41413-024-00366-0
Xiaomeng You, Jing Yan, Jeremy Herzog, Sabah Nobakhti, Ross Campbell, Allison Hoke, Rasha Hammamieh, R. Balfour Sartor, Sandra Shefelbine, Melissa A. Kacena, Nabarun Chakraborty, Julia F. Charles

Emerging evidence suggests a significant role of gut microbiome in bone health. Aging is well recognized as a crucial factor influencing the gut microbiome. In this study, we investigated whether age-dependent microbial change contributes to age-related bone loss in CB6F1 mice. The bone phenotype of 24-month-old germ-free (GF) mice was indistinguishable compared to their littermates colonized by fecal transplant at 1-month-old. Moreover, bone loss from 3 to 24-month-old was comparable between GF and specific pathogen-free (SPF) mice. Thus, GF mice were not protected from age-related bone loss. 16S rRNA gene sequencing of fecal samples from 3-month and 24-month-old SPF males indicated an age-dependent microbial shift with an alteration in energy and nutrient metabolism potential. An integrative analysis of 16S predicted metagenome function and LC-MS fecal metabolome revealed an enrichment of protein and amino acid biosynthesis pathways in aged mice. Microbial S-adenosyl methionine metabolism was increased in the aged mice, which has previously been associated with the host aging process. Collectively, aging caused microbial taxonomic and functional alteration in mice. To demonstrate the functional importance of young and old microbiome to bone, we colonized GF mice with fecal microbiome from 3-month or 24-month-old SPF donor mice for 1 and 8 months. The effect of microbial colonization on bone phenotypes was independent of the microbiome donors’ age. In conclusion, our study indicates age-related bone loss occurs independent of gut microbiome.

新的证据表明,肠道微生物组在骨骼健康中发挥着重要作用。众所周知,衰老是影响肠道微生物组的一个关键因素。在这项研究中,我们调查了年龄依赖性微生物变化是否导致了 CB6F1 小鼠与年龄相关的骨质流失。24个月大的无菌(GF)小鼠的骨表型与1个月大时通过粪便移植定植的同窝小鼠没有区别。此外,无菌小鼠和无特定病原体(SPF)小鼠从 3 个月大到 24 个月大的骨质流失情况相当。因此,GF小鼠不会受到与年龄有关的骨质流失的保护。对 3 个月大和 24 个月大的 SPF 雄性小鼠粪便样本进行的 16S rRNA 基因测序表明,微生物的变化与年龄有关,能量和营养代谢潜能发生了改变。对 16S 预测元基因组功能和 LC-MS 粪便代谢组的综合分析表明,老年小鼠的蛋白质和氨基酸生物合成途径丰富。老龄小鼠的微生物 S-腺苷蛋氨酸代谢增加,这与宿主的衰老过程有关。总之,衰老导致了小鼠体内微生物分类和功能的改变。为了证明年轻和年老微生物组对骨骼功能的重要性,我们用 3 个月或 24 个月大的 SPF 供体小鼠的粪便微生物组定植 GF 小鼠 1 个月和 8 个月。微生物定植对骨骼表型的影响与微生物组供体的年龄无关。总之,我们的研究表明,与年龄相关的骨质流失与肠道微生物组无关。
{"title":"Bone loss with aging is independent of gut microbiome in mice","authors":"Xiaomeng You, Jing Yan, Jeremy Herzog, Sabah Nobakhti, Ross Campbell, Allison Hoke, Rasha Hammamieh, R. Balfour Sartor, Sandra Shefelbine, Melissa A. Kacena, Nabarun Chakraborty, Julia F. Charles","doi":"10.1038/s41413-024-00366-0","DOIUrl":"https://doi.org/10.1038/s41413-024-00366-0","url":null,"abstract":"<p>Emerging evidence suggests a significant role of gut microbiome in bone health. Aging is well recognized as a crucial factor influencing the gut microbiome. In this study, we investigated whether age-dependent microbial change contributes to age-related bone loss in CB6F1 mice. The bone phenotype of 24-month-old germ-free (GF) mice was indistinguishable compared to their littermates colonized by fecal transplant at 1-month-old. Moreover, bone loss from 3 to 24-month-old was comparable between GF and specific pathogen-free (SPF) mice. Thus, GF mice were not protected from age-related bone loss. 16S rRNA gene sequencing of fecal samples from 3-month and 24-month-old SPF males indicated an age-dependent microbial shift with an alteration in energy and nutrient metabolism potential. An integrative analysis of 16S predicted metagenome function and LC-MS fecal metabolome revealed an enrichment of protein and amino acid biosynthesis pathways in aged mice. Microbial S-adenosyl methionine metabolism was increased in the aged mice, which has previously been associated with the host aging process. Collectively, aging caused microbial taxonomic and functional alteration in mice. To demonstrate the functional importance of young and old microbiome to bone, we colonized GF mice with fecal microbiome from 3-month or 24-month-old SPF donor mice for 1 and 8 months. The effect of microbial colonization on bone phenotypes was independent of the microbiome donors’ age. In conclusion, our study indicates age-related bone loss occurs independent of gut microbiome.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"30 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of sympathetic tone via hypothalamic descending pathway propagates glucocorticoid-induced endothelial impairment and osteonecrosis of the femoral head 通过下丘脑下降通路抑制交感神经张力可促进糖皮质激素诱发的内皮损伤和股骨头坏死
IF 12.7 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-11-08 DOI: 10.1038/s41413-024-00371-3
Wenkai Shao, Bo Wang, Ping Wang, Shuo Zhang, Song Gong, Xiaodong Guo, Deyu Duan, Zengwu Shao, Weijian Liu, Lei He, Fei Gao, Xiao Lv, Yong Feng

Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH. GCs activate the glucocorticoid receptor (GR) but hinder the activation of the mineralocorticoid receptor (MR) on neurons in the hypothalamic paraventricular nucleus (PVN). This disrupts the balance of corticosteroid receptors (GR/MR) and subsequently reduces the sympathetic outflow in the PVN. Vascular endothelial cells rapidly react to inhibition of sympathetic tone by provoking endothelial apoptosis in adult male mice treated with methylprednisolone (MPS) daily for 3 days, and we find substantially reduced H-type vessels in the femoral heads of MPS-treated ONFH mice. Importantly, treatment with a GR inhibitor (RU486) in the PVN promotes the activation of MR and rebalances the ratio of GR and MR, thus effectively boosting sympathetic outflow, as shown by an increase in tyrosine hydroxylase expression in both the PVN and the sympathetic postganglionic neurons and an increase in norepinephrine levels in both the serum and bone marrow of the femoral head of MPS-treated mice. Rebalancing the corticosteroid receptors mitigates GC-induced endothelial impairment and ONFH and promotes angiogenesis coupled with osteogenesis in the femoral head, while these effects are abolished by chemical sympathectomy with 6-OHDA or adrenergic receptor-β2 (Adrb2) knockout. Furthermore, activating Adrb2 signaling in vivo is sufficient to rescue the GC-induced ONFH phenotype. Mechanistically, norepinephrine increases the expression of the key glycolytic gene 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) via Adrb2-cyclic AMP response element-binding protein (CREB) signaling. Endothelial-specific overexpression of PFKFB3 attenuates endothelial impairment and prevents severe osteonecrosis in MPS-treated Adrb2 knockout mice. Thus, GC inhibits sympathetic tone via the hypothalamic descending pathway, which, in turn, acts as a mediator of GC-induced ONFH.

股骨头骨坏死(ONFH)是糖皮质激素(GC)治疗的常见并发症。最新研究表明,交感神经调节骨稳态,而 GCs 可降低交感神经张力。在这里,我们发现交感神经张力的急剧下降与 GC 诱导的 ONFH 的发病机制密切相关。GCs 可激活下丘脑室旁核(PVN)神经元上的糖皮质激素受体(GR),但会阻碍矿质皮质激素受体(MR)的激活。这就破坏了皮质类固醇受体(GR/MR)的平衡,进而减少了下丘脑室旁核的交感神经外流。在每天接受甲基强的松龙(MPS)治疗 3 天的成年雄性小鼠中,血管内皮细胞会迅速对交感神经张力的抑制做出反应,引发内皮细胞凋亡。重要的是,PVN 中的 GR 抑制剂(RU486)可促进 MR 的活化并重新平衡 GR 和 MR 的比例,从而有效促进交感神经的外流,这表现在 PVN 和交感神经节后神经元中酪氨酸羟化酶的表达增加,以及 MPS 治疗小鼠股骨头血清和骨髓中去甲肾上腺素水平的增加。重新平衡皮质类固醇受体可减轻 GC 诱导的内皮损伤和 ONFH,促进股骨头的血管生成和骨生成,而 6-OHDA 化学交感神经切除术或肾上腺素能受体-β2(Adrb2)基因敲除则可消除这些影响。此外,激活体内 Adrb2 信号足以挽救 GC 诱导的 ONFH 表型。从机理上讲,去甲肾上腺素通过Adrb2-环磷酸腺苷反应元件结合蛋白(CREB)信号传导增加了关键糖酵解基因6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶3(PFKFB3)的表达。在经 MPS 处理的 Adrb2 基因敲除小鼠中,内皮特异性过表达 PFKFB3 可减轻内皮损伤并防止严重骨坏死。因此,GC 可通过下丘脑下降通路抑制交感神经张力,而交感神经张力又是 GC 诱导 ONFH 的介质。
{"title":"Inhibition of sympathetic tone via hypothalamic descending pathway propagates glucocorticoid-induced endothelial impairment and osteonecrosis of the femoral head","authors":"Wenkai Shao, Bo Wang, Ping Wang, Shuo Zhang, Song Gong, Xiaodong Guo, Deyu Duan, Zengwu Shao, Weijian Liu, Lei He, Fei Gao, Xiao Lv, Yong Feng","doi":"10.1038/s41413-024-00371-3","DOIUrl":"https://doi.org/10.1038/s41413-024-00371-3","url":null,"abstract":"<p>Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH. GCs activate the glucocorticoid receptor (GR) but hinder the activation of the mineralocorticoid receptor (MR) on neurons in the hypothalamic paraventricular nucleus (PVN). This disrupts the balance of corticosteroid receptors (GR/MR) and subsequently reduces the sympathetic outflow in the PVN. Vascular endothelial cells rapidly react to inhibition of sympathetic tone by provoking endothelial apoptosis in adult male mice treated with methylprednisolone (MPS) daily for 3 days, and we find substantially reduced H-type vessels in the femoral heads of MPS-treated ONFH mice. Importantly, treatment with a GR inhibitor (RU486) in the PVN promotes the activation of MR and rebalances the ratio of GR and MR, thus effectively boosting sympathetic outflow, as shown by an increase in tyrosine hydroxylase expression in both the PVN and the sympathetic postganglionic neurons and an increase in norepinephrine levels in both the serum and bone marrow of the femoral head of MPS-treated mice. Rebalancing the corticosteroid receptors mitigates GC-induced endothelial impairment and ONFH and promotes angiogenesis coupled with osteogenesis in the femoral head, while these effects are abolished by chemical sympathectomy with 6-OHDA or adrenergic receptor-β2 (Adrb2) knockout. Furthermore, activating Adrb2 signaling in vivo is sufficient to rescue the GC-induced ONFH phenotype. Mechanistically, norepinephrine increases the expression of the key glycolytic gene 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) via Adrb2-cyclic AMP response element-binding protein (CREB) signaling. Endothelial-specific overexpression of PFKFB3 attenuates endothelial impairment and prevents severe osteonecrosis in MPS-treated Adrb2 knockout mice. Thus, GC inhibits sympathetic tone via the hypothalamic descending pathway, which, in turn, acts as a mediator of GC-induced ONFH.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"25 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IRF1-mediated upregulation of PARP12 promotes cartilage degradation by inhibiting PINK1/Parkin dependent mitophagy through ISG15 attenuating ubiquitylation and SUMOylation of MFN1/2. IRF1 介导的 PARP12 上调通过 ISG15 削弱 MFN1/2 的泛素化和 SUMO 化,抑制 PINK1/Parkin 依赖的有丝分裂,从而促进软骨降解。
IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-28 DOI: 10.1038/s41413-024-00363-3
Zengfa Deng, Dianbo Long, Changzhao Li, Hailong Liu, Wei Li, Yanlin Zhong, Xiaolin Mo, Ruiyun Li, Zibo Yang, Yan Kang, Guping Mao

Osteoarthritis (OA) is an age-related cartilage-degenerating joint disease. Mitochondrial dysfunction has been reported to promote the development of OA. Poly (ADP-ribose) polymerase family member 12 (PARP12) is a key regulator of mitochondrial function, protein translation, and inflammation. However, the role of PARP12 in OA-based cartilage degradation and the underlying mechanisms are relatively unknown. Here, we first demonstrated that PARP12 inhibits mitophagy and promotes OA progression in human OA cartilage and a monosodium iodoacetate-induced rat OA model. Using mass spectrometry and co-immunoprecipitation assay, PARP12 was shown to interact with ISG15, upregulate mitofusin 1 and 2 (MFN1/2) ISGylation, which downregulated MFN1/2 ubiquitination and SUMOylation, thereby inhibiting PINK1/Parkin-dependent chondrocyte mitophagy and promoting cartilage degradation. Moreover, inflammatory cytokine-induced interferon regulatory factor 1 (IRF1) activation was required for the upregulation of PARP12 expression, and it directly bound to the PARP12 promoter to activate transcription. XAV-939 inhibited PARP12 expression and suppressed OA pathogenesis in vitro and in vivo. Clinically, PARP12 can be used to predict the severity of OA; thus, it represents a new target for the study of mitophagy and OA progression. In brief, the IRF1-mediated upregulation of PARP12 promoted cartilage degradation by inhibiting PINK1/Parkin-dependent mitophagy via ISG15-based attenuation of MFN1/2 ubiquitylation and SUMOylation. Our data provide new insights into the molecular mechanisms underlying PARP12-based regulation of mitophagy and can facilitate the development of therapeutic strategies for the treatment of OA.

骨关节炎(OA)是一种与年龄有关的软骨退化性关节疾病。据报道,线粒体功能障碍会促进 OA 的发展。聚(ADP-核糖)聚合酶家族成员 12(PARP12)是线粒体功能、蛋白质翻译和炎症的关键调节因子。然而,PARP12 在以 OA 为基础的软骨降解中的作用及其内在机制却相对未知。在这里,我们首次证明了 PARP12 在人类 OA 软骨和碘乙酸钠诱导的大鼠 OA 模型中抑制有丝分裂并促进 OA 进展。通过质谱分析和共免疫沉淀分析,PARP12与ISG15相互作用,上调mitofusin 1和2(MFN1/2)的ISGylation,从而下调MFN1/2的泛素化和SUMOylation,从而抑制PINK1/Parkin依赖的软骨细胞有丝分裂,促进软骨降解。此外,PARP12的表达需要炎性细胞因子诱导的干扰素调节因子1(IRF1)激活,它直接与PARP12启动子结合激活转录。XAV-939抑制了PARP12的表达,并抑制了体外和体内OA的发病机制。在临床上,PARP12可用于预测OA的严重程度;因此,它是研究有丝分裂和OA进展的一个新靶点。简而言之,IRF1介导的PARP12上调通过基于ISG15的MFN1/2泛素化和SUMO化衰减,抑制了PINK1/Parkin依赖的有丝分裂,从而促进了软骨降解。我们的数据为基于PARP12的有丝分裂调控的分子机制提供了新的见解,有助于开发治疗OA的策略。
{"title":"IRF1-mediated upregulation of PARP12 promotes cartilage degradation by inhibiting PINK1/Parkin dependent mitophagy through ISG15 attenuating ubiquitylation and SUMOylation of MFN1/2.","authors":"Zengfa Deng, Dianbo Long, Changzhao Li, Hailong Liu, Wei Li, Yanlin Zhong, Xiaolin Mo, Ruiyun Li, Zibo Yang, Yan Kang, Guping Mao","doi":"10.1038/s41413-024-00363-3","DOIUrl":"10.1038/s41413-024-00363-3","url":null,"abstract":"<p><p>Osteoarthritis (OA) is an age-related cartilage-degenerating joint disease. Mitochondrial dysfunction has been reported to promote the development of OA. Poly (ADP-ribose) polymerase family member 12 (PARP12) is a key regulator of mitochondrial function, protein translation, and inflammation. However, the role of PARP12 in OA-based cartilage degradation and the underlying mechanisms are relatively unknown. Here, we first demonstrated that PARP12 inhibits mitophagy and promotes OA progression in human OA cartilage and a monosodium iodoacetate-induced rat OA model. Using mass spectrometry and co-immunoprecipitation assay, PARP12 was shown to interact with ISG15, upregulate mitofusin 1 and 2 (MFN1/2) ISGylation, which downregulated MFN1/2 ubiquitination and SUMOylation, thereby inhibiting PINK1/Parkin-dependent chondrocyte mitophagy and promoting cartilage degradation. Moreover, inflammatory cytokine-induced interferon regulatory factor 1 (IRF1) activation was required for the upregulation of PARP12 expression, and it directly bound to the PARP12 promoter to activate transcription. XAV-939 inhibited PARP12 expression and suppressed OA pathogenesis in vitro and in vivo. Clinically, PARP12 can be used to predict the severity of OA; thus, it represents a new target for the study of mitophagy and OA progression. In brief, the IRF1-mediated upregulation of PARP12 promoted cartilage degradation by inhibiting PINK1/Parkin-dependent mitophagy via ISG15-based attenuation of MFN1/2 ubiquitylation and SUMOylation. Our data provide new insights into the molecular mechanisms underlying PARP12-based regulation of mitophagy and can facilitate the development of therapeutic strategies for the treatment of OA.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"63"},"PeriodicalIF":14.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping RANKL- and OPG-expressing cells in bone tissue: the bone surface cells as activators of osteoclastogenesis and promoters of the denosumab rebound effect 绘制骨组织中的 RANKL 和 OPG 表达细胞图:骨表面细胞是破骨细胞生成的激活剂和地诺单抗反弹效应的促进剂
IF 12.7 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-18 DOI: 10.1038/s41413-024-00362-4
Bilal M. El-Masri, Christina M. Andreasen, Kaja S. Laursen, Viktoria B. Kofod, Xenia G. Dahl, Malene H. Nielsen, Jesper S. Thomsen, Annemarie Brüel, Mads S. Sørensen, Lars J. Hansen, Albert S. Kim, Victoria E. Taylor, Caitlyn Massarotti, Michelle M. McDonald, Xiaomeng You, Julia F. Charles, Jean-Marie Delaisse, Thomas L. Andersen

Denosumab is a monoclonal anti-RANKL antibody that inhibits bone resorption, increases bone mass, and reduces fracture risk. Denosumab discontinuation causes an extensive wave of rebound resorption, but the cellular mechanisms remain poorly characterized. We utilized in situ hybridization (ISH) as a direct approach to identify the cells that activate osteoclastogenesis through the RANKL/OPG pathway. ISH was performed across species, skeletal sites, and following recombinant OPG (OPG:Fc) and parathyroid hormone 1–34 (PTH) treatment of mice. OPG:Fc treatment in mice induced an increased expression of RANKL mRNA mainly in trabecular, but not endocortical bone surface cells. Additionally, a decreased expression of OPG mRNA was detected in bone surface cells and osteocytes of both compartments. A similar but more pronounced effect on RANKL and OPG expression was seen one hour after PTH treatment. These findings suggest that bone surface cells and osteocytes conjointly regulate the activation of osteoclastogenesis, and that OPG:Fc treatment induces a local accumulation of osteoclastogenic activation sites, ready to recruit and activate osteoclasts upon treatment discontinuation. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data from murine bone marrow stromal cells revealed that Tnfsf11+ cells expressed high levels of Mmp13, Limch1, and Wif1, confirming their osteoprogenitor status. ISH confirmed co-expression of Mmp13 and Tnfsf11 in bone surface cells of both vehicle- and OPG:Fc-treated mice. Under physiological conditions of human/mouse bone, RANKL is expressed mainly by osteoprogenitors proximate to the osteoclasts, while OPG is expressed mainly by osteocytes and bone-forming osteoblasts.

地诺单抗是一种单克隆抗 RANKL 抗体,可抑制骨吸收、增加骨量并降低骨折风险。停用地诺单抗会引起广泛的骨吸收反弹,但其细胞机制仍鲜为人知。我们利用原位杂交(ISH)作为一种直接方法来识别通过 RANKL/OPG 通路激活破骨细胞生成的细胞。我们对不同物种、不同骨骼部位以及重组 OPG(OPG:Fc)和甲状旁腺激素 1-34 (PTH) 处理后的小鼠进行了 ISH 研究。小鼠经 OPG:Fc 处理后,RANKL mRNA 主要在骨小梁而非皮质内骨表面细胞中的表达增加。此外,在骨表面细胞和两个区段的骨细胞中均检测到 OPG mRNA 表达减少。PTH 处理一小时后,对 RANKL 和 OPG 表达的影响类似但更明显。这些研究结果表明,骨表面细胞和骨细胞共同调控破骨细胞生成的激活,OPG:Fc 处理会诱导破骨细胞生成激活点的局部聚集,并在处理停止后招募和激活破骨细胞。对已公开的小鼠骨髓基质细胞单细胞RNA测序(scRNAseq)数据的分析表明,Tnfsf11+细胞表达了高水平的Mmp13、Limch1和Wif1,证实了它们的骨生成细胞身份。ISH证实了Mmp13和Tnfsf11在药物和OPG:Fc处理的小鼠骨表面细胞中的共表达。在人/鼠骨的生理条件下,RANKL主要由破骨细胞附近的骨生成细胞表达,而OPG主要由成骨细胞和成骨细胞表达。
{"title":"Mapping RANKL- and OPG-expressing cells in bone tissue: the bone surface cells as activators of osteoclastogenesis and promoters of the denosumab rebound effect","authors":"Bilal M. El-Masri, Christina M. Andreasen, Kaja S. Laursen, Viktoria B. Kofod, Xenia G. Dahl, Malene H. Nielsen, Jesper S. Thomsen, Annemarie Brüel, Mads S. Sørensen, Lars J. Hansen, Albert S. Kim, Victoria E. Taylor, Caitlyn Massarotti, Michelle M. McDonald, Xiaomeng You, Julia F. Charles, Jean-Marie Delaisse, Thomas L. Andersen","doi":"10.1038/s41413-024-00362-4","DOIUrl":"https://doi.org/10.1038/s41413-024-00362-4","url":null,"abstract":"<p>Denosumab is a monoclonal anti-RANKL antibody that inhibits bone resorption, increases bone mass, and reduces fracture risk. Denosumab discontinuation causes an extensive wave of rebound resorption, but the cellular mechanisms remain poorly characterized. We utilized in situ hybridization (ISH) as a direct approach to identify the cells that activate osteoclastogenesis through the RANKL/OPG pathway. ISH was performed across species, skeletal sites, and following recombinant OPG (OPG:Fc) and parathyroid hormone 1–34 (PTH) treatment of mice. OPG:Fc treatment in mice induced an increased expression of RANKL mRNA mainly in trabecular, but not endocortical bone surface cells. Additionally, a decreased expression of OPG mRNA was detected in bone surface cells and osteocytes of both compartments. A similar but more pronounced effect on RANKL and OPG expression was seen one hour after PTH treatment. These findings suggest that bone surface cells and osteocytes conjointly regulate the activation of osteoclastogenesis, and that OPG:Fc treatment induces a local accumulation of osteoclastogenic activation sites, ready to recruit and activate osteoclasts upon treatment discontinuation. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data from murine bone marrow stromal cells revealed that <i>Tnfsf11</i><sup>+</sup> cells expressed high levels of <i>Mmp13</i>, <i>Limch1</i>, and <i>Wif1</i>, confirming their osteoprogenitor status. ISH confirmed co-expression of <i>Mmp13</i> and <i>Tnfsf11</i> in bone surface cells of both vehicle- and OPG:Fc-treated mice. Under physiological conditions of human/mouse bone, RANKL is expressed mainly by osteoprogenitors proximate to the osteoclasts, while OPG is expressed mainly by osteocytes and bone-forming osteoblasts.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"45 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osteopetrosis-like disorders induced by osteoblast-specific retinoic acid signaling inhibition in mice 成骨细胞特异性视黄酸信号抑制诱导的小鼠骨坏死样疾病
IF 12.7 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-17 DOI: 10.1038/s41413-024-00353-5
Siyuan Sun, Yuanqi Liu, Jiping Sun, Bingxin Zan, Yiwen Cui, Anting Jin, Hongyuan Xu, Xiangru Huang, Yanfei Zhu, Yiling Yang, Xin Gao, Tingwei Lu, Xinyu Wang, Jingyi Liu, Li Mei, Lei Shen, Qinggang Dai, Lingyong Jiang

Osteopetrosis is an inherited metabolic disease, characterized by increased bone density and narrow marrow cavity. Patients with severe osteopetrosis exhibit abnormal bone brittleness, anemia, and infection complications, which commonly cause death within the first decade of life. Pathologically, osteopetrosis impairs not only the skeletal system, but also the hemopoietic and immune systems during development, while the underlying osteoimmunological mechanisms remain unclear. Osteoclastic mutations are regarded as the major causes of osteopetrosis, while osteoclast non-autonomous theories have been proposed in recent years with unclear underlying mechanisms. Retinoic acid (RA), the metabolite of Vitamin A, is an essential requirement for skeletal and hematopoietic development, through the activation of retinoic acid signaling. RA can relieve osteopetrosis symptoms in some animal models, while its effect on bone health is still controversial and the underlying mechanisms remain unclear. In this study, we constructed an osteoblast-specific inhibitory retinoic acid signaling mouse model and surprisingly found it mimicked the symptoms of osteopetrosis found in clinical cases: dwarfism, increased imperfectly-formed trabecular bone deposition with a reduced marrow cavity, thin cortical bone with a brittle skeleton, and hematopoietic and immune dysfunction. Micro-CT, the three-point bending test, and histological analysis drew a landscape of poor bone quality. Single-cell RNA sequencing (scRNA-seq) of the femur and RNA-seq of osteoblasts uncovered an atlas of pathological skeletal metabolism dysfunction in the mutant mice showing that osteogenesis was impaired in a cell-autonomous manner and osteoclastogenesis was impaired via osteoblast-osteoclast crosstalk. Moreover, scRNA-seq of bone marrow and flow cytometry of peripheral blood, spleen, and bone marrow uncovered pathology in the hematopoietic and immune systems in the mutant mice, mimicking human osteopetrosis. Results showed that hematopoietic progenitors and B lymphocyte differentiation were affected and the osteoblast-dominated cell crosstalk was impaired, which may result from transcriptional impairment of the ligands Pdgfd and Sema4d. In summary, we uncovered previously unreported pathogenesis of osteopetrosis-like disorder in mice with skeletal, hematopoietic, and immune system dysfunction, which was induced by the inhibition of retinoic acid signaling in osteoblasts, and sheds new insights into a potential treatment for osteopetrosis.

骨etrosis 是一种遗传性代谢疾病,以骨密度增加和骨髓腔狭窄为特征。严重的骨质软化症患者表现为骨质异常脆化、贫血和感染并发症,通常会在出生后的头十年内死亡。从病理学角度看,骨坏死在发育过程中不仅损害骨骼系统,还损害造血系统和免疫系统,但其潜在的骨免疫学机制仍不清楚。破骨细胞突变被认为是骨化病的主要病因,而近年来提出的破骨细胞非自主性理论,其基本机制尚不清楚。视黄酸(RA)是维生素 A 的代谢产物,通过激活视黄酸信号传导,是骨骼和造血发育的必要条件。在一些动物模型中,RA 可以缓解骨质增生症状,但它对骨骼健康的影响仍存在争议,其潜在机制也不清楚。在这项研究中,我们构建了一种成骨细胞特异性抑制视黄酸信号转导的小鼠模型,并惊讶地发现它模拟了临床病例中发现的骨化病症状:侏儒症、不完全形成的骨小梁沉积增加且骨髓腔缩小、皮质骨薄且骨架脆、造血和免疫功能障碍。显微 CT、三点弯曲试验和组织学分析均显示出骨质状况不佳。股骨的单细胞RNA测序(scRNA-seq)和成骨细胞的RNA-seq发现了突变小鼠病理骨骼代谢功能障碍的图谱,显示成骨以细胞自主方式受损,破骨细胞通过成骨细胞-破骨细胞串扰受损。此外,骨髓的 scRNA-seq 和外周血、脾脏和骨髓的流式细胞术发现了突变小鼠造血和免疫系统的病理变化,模拟了人类骨质变性。结果显示,造血祖细胞和 B 淋巴细胞分化受到影响,成骨细胞主导的细胞串联受到损害,这可能是配体 Pdgfd 和 Sema4d 转录受损的结果。总之,我们发现了以前未报道过的小鼠骨骼、造血和免疫系统功能障碍的骨坏死样疾病的发病机制,这种疾病是通过抑制成骨细胞中的视黄酸信号转导诱发的,并为骨坏死的潜在治疗方法提供了新的见解。
{"title":"Osteopetrosis-like disorders induced by osteoblast-specific retinoic acid signaling inhibition in mice","authors":"Siyuan Sun, Yuanqi Liu, Jiping Sun, Bingxin Zan, Yiwen Cui, Anting Jin, Hongyuan Xu, Xiangru Huang, Yanfei Zhu, Yiling Yang, Xin Gao, Tingwei Lu, Xinyu Wang, Jingyi Liu, Li Mei, Lei Shen, Qinggang Dai, Lingyong Jiang","doi":"10.1038/s41413-024-00353-5","DOIUrl":"https://doi.org/10.1038/s41413-024-00353-5","url":null,"abstract":"<p>Osteopetrosis is an inherited metabolic disease, characterized by increased bone density and narrow marrow cavity. Patients with severe osteopetrosis exhibit abnormal bone brittleness, anemia, and infection complications, which commonly cause death within the first decade of life. Pathologically, osteopetrosis impairs not only the skeletal system, but also the hemopoietic and immune systems during development, while the underlying osteoimmunological mechanisms remain unclear. Osteoclastic mutations are regarded as the major causes of osteopetrosis, while osteoclast non-autonomous theories have been proposed in recent years with unclear underlying mechanisms. Retinoic acid (RA), the metabolite of Vitamin A, is an essential requirement for skeletal and hematopoietic development, through the activation of retinoic acid signaling. RA can relieve osteopetrosis symptoms in some animal models, while its effect on bone health is still controversial and the underlying mechanisms remain unclear. In this study, we constructed an osteoblast-specific inhibitory retinoic acid signaling mouse model and surprisingly found it mimicked the symptoms of osteopetrosis found in clinical cases: dwarfism, increased imperfectly-formed trabecular bone deposition with a reduced marrow cavity, thin cortical bone with a brittle skeleton, and hematopoietic and immune dysfunction. Micro-CT, the three-point bending test, and histological analysis drew a landscape of poor bone quality. Single-cell RNA sequencing (scRNA-seq) of the femur and RNA-seq of osteoblasts uncovered an atlas of pathological skeletal metabolism dysfunction in the mutant mice showing that osteogenesis was impaired in a cell-autonomous manner and osteoclastogenesis was impaired via osteoblast-osteoclast crosstalk. Moreover, scRNA-seq of bone marrow and flow cytometry of peripheral blood, spleen, and bone marrow uncovered pathology in the hematopoietic and immune systems in the mutant mice, mimicking human osteopetrosis. Results showed that hematopoietic progenitors and B lymphocyte differentiation were affected and the osteoblast-dominated cell crosstalk was impaired, which may result from transcriptional impairment of the ligands <i>Pdgfd</i> and <i>Sema4d</i>. In summary, we uncovered previously unreported pathogenesis of osteopetrosis-like disorder in mice with skeletal, hematopoietic, and immune system dysfunction, which was induced by the inhibition of retinoic acid signaling in osteoblasts, and sheds new insights into a potential treatment for osteopetrosis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"18 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A monoallelic variant in CCN2 causes an autosomal dominant spondyloepimetaphyseal dysplasia with low bone mass CCN2的单等位基因变异导致常染色体显性脊柱软骨发育不良和低骨量
IF 12.7 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-16 DOI: 10.1038/s41413-024-00364-2
Shanshan Li, Rui Shao, Shufa Li, Jiao Zhao, Qi Deng, Ping Li, Zhanying Wei, Shuqin Xu, Lin Chen, Baojie Li, Weiguo Zou, Zhenlin Zhang

Cellular communication network factor 2 (CCN2) is a secreted extracellular matrix-associated protein, and its aberrantly increased expression has been implicated in a diversity of diseases involving pathological processes of fibrosis, chronic inflammation, or tissue injury, which has promoted the evaluation of CCN2 as therapeutic targets for multiple disorders. However, human phenotypes associated with CCN2 deficiency have remained enigmatic; variants in CCN2 have not yet been associated with a human phenotype. Here, we collected families diagnosed with spondyloepimetaphyseal dysplasia (SEMD), and screened candidate pathogenic genes for families without known genetic causes using next-generation sequencing. We identified a monoallelic variant in signal peptide of CCN2 (NM_001901.2: c.65 G > C [p.Arg22Pro]) as the cause of SEMD in 14 subjects presenting with different degree of short stature, premature osteoarthritis, and osteoporosis. Affected subjects showed decreased serum CCN2 levels. Cell lines harboring the variant displayed decreased amount of CCN2 proteins in culture medium and an increased intracellular retention, indicating impaired protein secretion. And the variant weakened the stimulation effect of CCN2 on osteogenesis of bone marrow mesenchymal stem cells. Zebrafish ccn2a knockout model and osteoblast lineage-specific Ccn2-deficient mice (Ccn2fl/fl;Prx1Cre) partially recapitulated the phenotypes including low bone mass observed in affected subjects. Pathological mechanism implicated in the skeletal abnormality in Ccn2fl/fl;Prx1Cre mice involved decreased bone formation, increased bone resorption, and abnormal growth plate formation. Collectively, our study indicate that monoallelic variants in CCN2 lead to a human inherited skeletal dysplasia, and highlight the critical role of CCN2 in osteogenesis in human.

细胞通讯网络因子2(CCN2)是一种分泌性细胞外基质相关蛋白,其表达的异常增加与多种涉及纤维化、慢性炎症或组织损伤等病理过程的疾病有关,这促进了将CCN2作为多种疾病治疗靶点的评估。然而,与CCN2缺乏相关的人类表型仍是一个谜;CCN2的变异尚未与人类表型相关联。在此,我们收集了被诊断为脊柱软骨发育不良(SEMD)的家庭,并利用新一代测序技术筛选了没有已知遗传原因的家庭的候选致病基因。我们在14名出现不同程度的身材矮小、过早骨关节炎和骨质疏松症的受试者中发现了CCN2信号肽(NM_001901.2:c.65 G >C[p.Arg22Pro])的单等位基因变异是SEMD的病因。受影响的受试者血清中的 CCN2 水平下降。携带该变异体的细胞系在培养基中的CCN2蛋白量减少,细胞内潴留增加,表明蛋白分泌受损。该变异体削弱了CCN2对骨髓间充质干细胞成骨的刺激作用。斑马鱼ccn2a基因敲除模型和成骨细胞系特异性Ccn2缺陷小鼠(Ccn2fl/fl;Prx1Cre)部分再现了受影响人群的表型,包括低骨量。Ccn2fl/fl;Prx1Cre 小鼠骨骼异常的病理机制涉及骨形成减少、骨吸收增加和生长板形成异常。总之,我们的研究表明,CCN2单倍变异会导致人类遗传性骨骼发育不良,并凸显了CCN2在人类成骨过程中的关键作用。
{"title":"A monoallelic variant in CCN2 causes an autosomal dominant spondyloepimetaphyseal dysplasia with low bone mass","authors":"Shanshan Li, Rui Shao, Shufa Li, Jiao Zhao, Qi Deng, Ping Li, Zhanying Wei, Shuqin Xu, Lin Chen, Baojie Li, Weiguo Zou, Zhenlin Zhang","doi":"10.1038/s41413-024-00364-2","DOIUrl":"https://doi.org/10.1038/s41413-024-00364-2","url":null,"abstract":"<p>Cellular communication network factor 2 (CCN2) is a secreted extracellular matrix-associated protein, and its aberrantly increased expression has been implicated in a diversity of diseases involving pathological processes of fibrosis, chronic inflammation, or tissue injury, which has promoted the evaluation of CCN2 as therapeutic targets for multiple disorders. However, human phenotypes associated with CCN2 deficiency have remained enigmatic; variants in <i>CCN2</i> have not yet been associated with a human phenotype. Here, we collected families diagnosed with spondyloepimetaphyseal dysplasia (SEMD), and screened candidate pathogenic genes for families without known genetic causes using next-generation sequencing. We identified a monoallelic variant in signal peptide of <i>CCN2</i> (NM_001901.2: c.65 G &gt; C [p.Arg22Pro]) as the cause of SEMD in 14 subjects presenting with different degree of short stature, premature osteoarthritis, and osteoporosis. Affected subjects showed decreased serum CCN2 levels. Cell lines harboring the variant displayed decreased amount of CCN2 proteins in culture medium and an increased intracellular retention, indicating impaired protein secretion. And the variant weakened the stimulation effect of CCN2 on osteogenesis of bone marrow mesenchymal stem cells. Zebrafish <i>ccn2a</i> knockout model and osteoblast lineage-specific <i>Ccn2</i>-deficient mice (<i>Ccn2</i><sup><i>fl/fl</i></sup><i>;Prx1</i><sup><i>Cre</i></sup>) partially recapitulated the phenotypes including low bone mass observed in affected subjects. Pathological mechanism implicated in the skeletal abnormality in <i>Ccn2</i><sup><i>fl/fl</i></sup><i>;Prx1</i><sup><i>Cre</i></sup> mice involved decreased bone formation, increased bone resorption, and abnormal growth plate formation. Collectively, our study indicate that monoallelic variants in <i>CCN2</i> lead to a human inherited skeletal dysplasia, and highlight the critical role of CCN2 in osteogenesis in human.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"7 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases 14-3-3 蛋白的多样性及其在骨骼和关节相关疾病中的作用
IF 12.7 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-15 DOI: 10.1038/s41413-024-00370-4
Renpeng Zhou, Weirong Hu, Peter X. Ma, Chuan-ju Liu

Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.

骨与关节相关疾病,包括骨关节炎(OA)、类风湿性关节炎(RA)和骨肿瘤,由于对肌肉骨骼系统的破坏性影响,对健康构成了重大挑战。14-3-3 蛋白是一个保守的调控分子家族,在这些疾病的病理过程中起着至关重要的作用。本综述讨论了 14-3-3 蛋白的复杂结构和多功能性、它们对信号通路的调控以及它们与其他蛋白的相互作用。我们强调了 14-3-3 蛋白在调控成骨细胞、破骨细胞、软骨细胞和骨重塑中的重要性,这些都是骨与关节系统维护和功能障碍的关键因素。本研究特别关注阐明 14-3-3 蛋白在 OA、RA 和骨恶性肿瘤病理学中的作用,14-3-3 介导的信号级联失调与这些疾病的发生过程有关联。本综述阐明了 14-3-3 蛋白相互作用的紊乱如何导致这些疾病的病理表现,包括关节破坏和溶骨活动。我们重点介绍了将 14-3-3 蛋白质定位为疾病进展潜在生物标志物和创新治疗靶点的前沿研究,这些研究为疾病干预和管理提供了新途径。
{"title":"Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases","authors":"Renpeng Zhou, Weirong Hu, Peter X. Ma, Chuan-ju Liu","doi":"10.1038/s41413-024-00370-4","DOIUrl":"https://doi.org/10.1038/s41413-024-00370-4","url":null,"abstract":"<p>Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"93 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periostin+ myeloid cells improved long bone regeneration in a mechanosensitive manner 髓磷脂+髓系细胞以机械敏感的方式改善长骨再生
IF 12.7 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-15 DOI: 10.1038/s41413-024-00361-5
Ziyan Wang, Minmin Lin, Yonghao Pan, Yang Liu, Chengyu Yang, Jianqun Wu, Yan Wang, Bingtong Yan, Jingjing Zhou, Rouxi Chen, Chao Liu

Myeloid cells are pivotal in the inflammatory and remodeling phases of fracture repair. Here, we investigate the effect of periostin expressed by myeloid cells on bone regeneration in a monocortical tibial defect (MTD) model. In this study, we show that periostin is expressed by periosteal myeloid cells, primarily the M2 macrophages during bone regeneration. Knockout of periostin in myeloid cells reduces cortical bone thickness, disrupts trabecular bone connectivity, impairs repair impairment, and hinders M2 macrophage polarization. Mechanical stimulation is a regulator of periostin in macrophages. By activating transforming growth factor-β (TGF-β), it increases periostin expression in macrophages and induces M2 polarization. This mechanosensitive effect also reverses the delayed bone repair induced by periostin deficiency in myeloid cells by strengthening the angiogenesis-osteogenesis coupling. In addition, transplantation of mechanically conditioned macrophages into the periosteum over a bone defect results in substantially enhanced repair, confirming the critical role of macrophage-secreted periostin in bone repair. In summary, our findings suggest that mechanical stimulation regulates periostin expression and promotes M2 macrophage polarization, highlighting the potential of mechanically conditioned macrophages as a therapeutic strategy for enhancing bone repair.

髓系细胞在骨折修复的炎症和重塑阶段起着关键作用。在此,我们研究了在单皮质胫骨缺损(MTD)模型中,髓系细胞表达的骨粘连蛋白对骨再生的影响。在这项研究中,我们发现在骨再生过程中,骨膜髓系细胞,主要是 M2 巨噬细胞表达了骨粘连蛋白。敲除髓质细胞中的骨粘连蛋白可减少皮质骨厚度,破坏骨小梁的连接,损害修复功能,并阻碍 M2 巨噬细胞的极化。机械刺激是巨噬细胞中骨膜增生蛋白的调节器。通过激活转化生长因子-β(TGF-β),它能增加巨噬细胞中的骨膜增生蛋白表达并诱导 M2 极化。这种机械敏感效应还能通过加强血管生成-骨生成耦合,逆转髓系细胞因缺乏骨膜增生蛋白而导致的骨修复延迟。此外,将经机械调节的巨噬细胞移植到骨缺损处的骨膜中,可大大增强修复效果,这证实了巨噬细胞分泌的骨膜素在骨修复中的关键作用。总之,我们的研究结果表明,机械刺激可调控骨粘连蛋白的表达并促进 M2 巨噬细胞的极化,这凸显了机械调理巨噬细胞作为加强骨修复治疗策略的潜力。
{"title":"Periostin+ myeloid cells improved long bone regeneration in a mechanosensitive manner","authors":"Ziyan Wang, Minmin Lin, Yonghao Pan, Yang Liu, Chengyu Yang, Jianqun Wu, Yan Wang, Bingtong Yan, Jingjing Zhou, Rouxi Chen, Chao Liu","doi":"10.1038/s41413-024-00361-5","DOIUrl":"https://doi.org/10.1038/s41413-024-00361-5","url":null,"abstract":"<p>Myeloid cells are pivotal in the inflammatory and remodeling phases of fracture repair. Here, we investigate the effect of periostin expressed by myeloid cells on bone regeneration in a monocortical tibial defect (MTD) model. In this study, we show that periostin is expressed by periosteal myeloid cells, primarily the M2 macrophages during bone regeneration. Knockout of periostin in myeloid cells reduces cortical bone thickness, disrupts trabecular bone connectivity, impairs repair impairment, and hinders M2 macrophage polarization. Mechanical stimulation is a regulator of periostin in macrophages. By activating transforming growth factor-β (TGF-β), it increases periostin expression in macrophages and induces M2 polarization. This mechanosensitive effect also reverses the delayed bone repair induced by periostin deficiency in myeloid cells by strengthening the angiogenesis-osteogenesis coupling. In addition, transplantation of mechanically conditioned macrophages into the periosteum over a bone defect results in substantially enhanced repair, confirming the critical role of macrophage-secreted periostin in bone repair. In summary, our findings suggest that mechanical stimulation regulates periostin expression and promotes M2 macrophage polarization, highlighting the potential of mechanically conditioned macrophages as a therapeutic strategy for enhancing bone repair.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"21 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bone Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1