1,550-nm photonic crystal surface-emitting laser diode fabricated by single deep air-hole etch

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanophotonics Pub Date : 2025-02-13 DOI:10.1515/nanoph-2024-0760
Myeongeun Kim, Ye-Seong Song, Lakjong Jeong, Tae-Yun Lee, Hyo Seok Choi, In Kim, Myungjae Lee, Heonsu Jeon
{"title":"1,550-nm photonic crystal surface-emitting laser diode fabricated by single deep air-hole etch","authors":"Myeongeun Kim, Ye-Seong Song, Lakjong Jeong, Tae-Yun Lee, Hyo Seok Choi, In Kim, Myungjae Lee, Heonsu Jeon","doi":"10.1515/nanoph-2024-0760","DOIUrl":null,"url":null,"abstract":"Photonic crystal surface-emitting lasers (PCSELs) are promising light sources with numerous advantages, including vertical emission, single-mode operation, and high output power. However, the fabrication of PCSEL devices requires advanced techniques, such as wafer bonding or epitaxial regrowth, to form a photonic crystal (PhC) structure close to the central waveguide layer. This process is not only complicated but also necessitates multiple semiconductor epitaxies, which reduces fabrication yield and increases manufacturing costs. In this study, we introduce a simpler method for fabricating PCSELs that requires only a single dry-etch run on any standard edge-emitting laser diode epistructure. The key challenge of creating an array of PhC air holes deep enough to reach the waveguide layer is addressed through high-temperature, high-plasma-density dry etching. PCSEL devices fabricated using this method lased in single mode at a threshold current density as low as ∼0.8 kA/cm<jats:sup>2</jats:sup>, which is comparable to or better than previously demonstrated devices. Our results offer a cost-effective, high-yield approach to PCSEL fabrication.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"13 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0760","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic crystal surface-emitting lasers (PCSELs) are promising light sources with numerous advantages, including vertical emission, single-mode operation, and high output power. However, the fabrication of PCSEL devices requires advanced techniques, such as wafer bonding or epitaxial regrowth, to form a photonic crystal (PhC) structure close to the central waveguide layer. This process is not only complicated but also necessitates multiple semiconductor epitaxies, which reduces fabrication yield and increases manufacturing costs. In this study, we introduce a simpler method for fabricating PCSELs that requires only a single dry-etch run on any standard edge-emitting laser diode epistructure. The key challenge of creating an array of PhC air holes deep enough to reach the waveguide layer is addressed through high-temperature, high-plasma-density dry etching. PCSEL devices fabricated using this method lased in single mode at a threshold current density as low as ∼0.8 kA/cm2, which is comparable to or better than previously demonstrated devices. Our results offer a cost-effective, high-yield approach to PCSEL fabrication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光子晶体表面发射激光器(PCSEL)是一种前景广阔的光源,具有垂直发射、单模工作和高输出功率等众多优点。然而,PCSEL 器件的制造需要先进的技术,如晶圆键合或外延再生长,以形成靠近中心波导层的光子晶体(PhC)结构。这一过程不仅复杂,而且需要多个半导体外延,从而降低了制造产量,增加了制造成本。在本研究中,我们介绍了一种更简单的 PCSEL 制造方法,只需在任何标准边缘发射激光二极管外延结构上进行一次干蚀刻。通过高温、高等离子体密度干法蚀刻,我们解决了在波导层上形成足够深的 PhC 气孔阵列这一关键难题。采用这种方法制造的 PCSEL 器件以单模方式发光,阈值电流密度低至 ∼0.8 kA/cm2,与之前展示的器件相当或更好。我们的研究成果为 PCSEL 的制造提供了一种高性价比、高产出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
High-efficiency generation of bi-functional holography with metasurfaces Improving quantum metrology protocols with programmable photonic circuits Luminescence thermometry based on photon emitters in nanophotonic silicon waveguides Tunable holographic metasurfaces for augmented and virtual reality Enhanced photoluminescence of strongly coupled single molecule-plasmonic nanocavity: analysis of spectral modifications using nonlocal response theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1