{"title":"Role of complex energy and momentum in open cavity resonances","authors":"DongJun Kang, Eun Su Jeon, SeokJae Yoo","doi":"10.1515/nanoph-2024-0623","DOIUrl":null,"url":null,"abstract":"Complex power, also known as alternating current (AC) power, is a well-established concept in an electric circuit composed of resistive and reactive elements. On the other hand, the role of complex power in optics has been elusive. In this work, we reveal that the complex energy and momentum determine the resonance frequency and the decay rate of open cavity resonance, the so-called quasinormal modes (QNMs), respectively. We also demonstrate the role of the complex energy and momentum in typical open cavities analytically and numerically: the Fabry–Perot cavity, the surface plasmon polaritons (SPPs), the plasmonic nanorod, the nanosphere, and the dielectric supercavity.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"18 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0623","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Complex power, also known as alternating current (AC) power, is a well-established concept in an electric circuit composed of resistive and reactive elements. On the other hand, the role of complex power in optics has been elusive. In this work, we reveal that the complex energy and momentum determine the resonance frequency and the decay rate of open cavity resonance, the so-called quasinormal modes (QNMs), respectively. We also demonstrate the role of the complex energy and momentum in typical open cavities analytically and numerically: the Fabry–Perot cavity, the surface plasmon polaritons (SPPs), the plasmonic nanorod, the nanosphere, and the dielectric supercavity.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.