Insights into defect cluster formation in non-stoichiometric wustite (Fe1−xO) at elevated temperatures: accurate force field from deep learning

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2025-02-14 DOI:10.1038/s41524-025-01527-3
Zeng Liang, Kejiang Li, Jianliang Zhang, Alberto N. Conejo
{"title":"Insights into defect cluster formation in non-stoichiometric wustite (Fe1−xO) at elevated temperatures: accurate force field from deep learning","authors":"Zeng Liang, Kejiang Li, Jianliang Zhang, Alberto N. Conejo","doi":"10.1038/s41524-025-01527-3","DOIUrl":null,"url":null,"abstract":"<p>The limited understanding of the microstructure and dynamic evolution associated with the non-stoichiometric characteristics of wustite has constrained the comprehension of iron oxide properties, diffusion, and phase transformation behaviors. This study employs deep learning methods to train interatomic potential parameters for the Fe–O system, achieving precise atomic-scale simulations of the wustite phase structure and internal lattice defects. This approach addresses the shortcomings of large-scale molecular dynamics simulations in accurately describing the solid-phase structure of the Fe–O system. Utilizing these potential parameters, this research is the first to reveal the complex mechanisms underlying the non-stoichiometric nature of wustite (Fe<sub>1−<i>x</i></sub>O). The study found that cation vacancy defects in wustite tend to aggregate, forming stable cluster structures. It also elucidated the formation mechanisms of interstitial iron atoms and typical defect clusters in wustite, establishing the formation preference for Koch–Cohen defect clusters. These potential parameters and research methods can be further applied in future studies on iron oxide reduction, phase transformation mechanisms, and related material development, thereby advancing fundamental research in metallurgy and related industries.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01527-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The limited understanding of the microstructure and dynamic evolution associated with the non-stoichiometric characteristics of wustite has constrained the comprehension of iron oxide properties, diffusion, and phase transformation behaviors. This study employs deep learning methods to train interatomic potential parameters for the Fe–O system, achieving precise atomic-scale simulations of the wustite phase structure and internal lattice defects. This approach addresses the shortcomings of large-scale molecular dynamics simulations in accurately describing the solid-phase structure of the Fe–O system. Utilizing these potential parameters, this research is the first to reveal the complex mechanisms underlying the non-stoichiometric nature of wustite (Fe1−xO). The study found that cation vacancy defects in wustite tend to aggregate, forming stable cluster structures. It also elucidated the formation mechanisms of interstitial iron atoms and typical defect clusters in wustite, establishing the formation preference for Koch–Cohen defect clusters. These potential parameters and research methods can be further applied in future studies on iron oxide reduction, phase transformation mechanisms, and related material development, thereby advancing fundamental research in metallurgy and related industries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温下非共沸物(Fe1-xO)中缺陷簇形成的启示:来自深度学习的精确力场
对浮氏体非化学计量特征的微观结构和动态演化的有限认识限制了对氧化铁性能、扩散和相变行为的理解。本研究采用深度学习方法训练Fe-O体系的原子间势参数,实现了对浮氏体相结构和内部晶格缺陷的精确原子尺度模拟。该方法解决了大规模分子动力学模拟在准确描述Fe-O体系固相结构方面的不足。利用这些电位参数,本研究首次揭示了乌氏体(Fe1−xO)非化学计量性质的复杂机制。研究发现,浮氏体中的阳离子空位缺陷倾向于聚集,形成稳定的团簇结构。阐明了富氏体中间隙铁原子和典型缺陷团簇的形成机制,确定了Koch-Cohen缺陷团簇的形成偏好。这些潜在的参数和研究方法可以进一步应用于未来氧化铁还原、相变机理和相关材料开发的研究,从而推动冶金及相关行业的基础研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
phaser: a unified and extensible framework for fast electron ptychography Origin of the insulating phase and metal-insulator transition in the organic molecular solid κ-(BEDT-TTF)2Cu2(CN)3 Optimal invariant sets for atomistic machine learning Short bond evaluation method for rapidly assessing the generalization ability of deep neural network potential function models and its effectiveness verification Quantifying the phase diagram and Hamiltonian of S = 1/2 kagome antiferromagnets: bridging theory and experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1