Pressure-resistant polyimide hollow fiber membranes for high-performance helium recovery from natural gas

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2025-02-14 DOI:10.1016/j.polymer.2025.128164
Zhenyuan Li , Xing Liu , Ying Sun , Lili Gong , Chunfa Liao , Shuangjiang Luo
{"title":"Pressure-resistant polyimide hollow fiber membranes for high-performance helium recovery from natural gas","authors":"Zhenyuan Li ,&nbsp;Xing Liu ,&nbsp;Ying Sun ,&nbsp;Lili Gong ,&nbsp;Chunfa Liao ,&nbsp;Shuangjiang Luo","doi":"10.1016/j.polymer.2025.128164","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial gas separation processes demand membranes with superior separation performance under high feed pressures. Herein, we fabricate defect-free hollow fiber membranes (HFMs) using 6FDA-mPDA<sub>0.9</sub>-TFMB<sub>0.1</sub> copolyimide, achieving both exceptional pressure resistance and excellent gas separation performance. Through a dry-jet/wet-quench spinning approach, we systematically optimize the microstructure of the HFMs by adjusting the dope composition and spinning conditions. The results reveal that polymer concentration, dope-to-bore fluid ratio, and take-up rate have a significant impact on the pressure resistance of HFMs. Under optimized conditions, the fabricated HFMs exhibit a high burst pressure of 10.5 MPa, along with excellent gas separation performance, including a He permeance of 72.1 GPU and a He/CH<sub>4</sub> selectivity of 178. Additionally, mixed-gas permeation experiments conducted at feed pressures up to 750 PSIA demonstrate excellent resistance to heavy hydrocarbons. These ultra-strong, high-performance HFMs show great potential for efficient helium separation from natural gas under high-pressure conditions.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"323 ","pages":"Article 128164"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125001508","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial gas separation processes demand membranes with superior separation performance under high feed pressures. Herein, we fabricate defect-free hollow fiber membranes (HFMs) using 6FDA-mPDA0.9-TFMB0.1 copolyimide, achieving both exceptional pressure resistance and excellent gas separation performance. Through a dry-jet/wet-quench spinning approach, we systematically optimize the microstructure of the HFMs by adjusting the dope composition and spinning conditions. The results reveal that polymer concentration, dope-to-bore fluid ratio, and take-up rate have a significant impact on the pressure resistance of HFMs. Under optimized conditions, the fabricated HFMs exhibit a high burst pressure of 10.5 MPa, along with excellent gas separation performance, including a He permeance of 72.1 GPU and a He/CH4 selectivity of 178. Additionally, mixed-gas permeation experiments conducted at feed pressures up to 750 PSIA demonstrate excellent resistance to heavy hydrocarbons. These ultra-strong, high-performance HFMs show great potential for efficient helium separation from natural gas under high-pressure conditions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业气体分离过程需要在高进料压力下具有卓越分离性能的膜。在本文中,我们使用 6FDA-mPDA0.9-TFMB0.1 共聚亚胺制造了无缺陷中空纤维膜 (HFM),实现了优异的耐压性能和卓越的气体分离性能。我们采用干喷射/湿淬火纺丝方法,通过调整涂料成分和纺丝条件,系统地优化了中空纤维膜的微观结构。研究结果表明,聚合物浓度、掺杂剂与孔内流体的比例以及收率对高频膜的耐压性能有显著影响。在优化条件下,制造出的高频膜具有 10.5 兆帕的高爆破压力和优异的气体分离性能,包括 72.1 GPU 的 He 渗透率和 178 的 He/CH4 选择性。此外,在进料压力高达 750 PSIA 的条件下进行的混合气体渗透实验也证明了其对重烃的出色耐受性。这些超强、高性能的 HFM 显示出在高压条件下从天然气中高效分离氦气的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Investigation on the Polymorph Selection during Recrystallization of Isotactic Polybutene-1 Homopolymer Assessing the mechanical behaviour of reusable polyurethane networks with graphene as internal nano-heater Highly enhanced the toughness and fatigue resistance of PC/ABS blends by constructing a double-comb compatibilizer “Grafting-from” Synthesis of Fluorinated Acrylamide Polymer Brushes: from Controlled Polymerization to Outstanding Antifouling Properties Hierarchical Porosity in Emulsion-Templated Triblock Copolymer-like Structures: Mid-block Degradation and End-block Hypercrosslinking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1