Constructing Compact Hybrid Buffer Interface via Ion Agglomeration Zone Electrolyte for Stable Zn Metal Battery

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-02-14 DOI:10.1002/aenm.202405738
Yefei Chen, Weidong He, Kangning Zhao, Xingyun Luo, Jiafeng Zhang, Yongzhong Wu, Xiaopeng Hao
{"title":"Constructing Compact Hybrid Buffer Interface via Ion Agglomeration Zone Electrolyte for Stable Zn Metal Battery","authors":"Yefei Chen, Weidong He, Kangning Zhao, Xingyun Luo, Jiafeng Zhang, Yongzhong Wu, Xiaopeng Hao","doi":"10.1002/aenm.202405738","DOIUrl":null,"url":null,"abstract":"The development of aqueous Zn batteries is plagued by longevity limited at practical condition, due to the unstable electrode‐electrolyte interface. Here, this work designs an extended‐scale ion agglomeration zone (EIAZ) electrolyte to obtain anion combined with cation structures and reduce water activity. The electrolyte nanostructure features nanometer‐scale depleted water zones in which ion pairs are densely packed together to form EIAZ, which facilitates compact hybrid buffer interface formed via a collective ion transmission process and ionic co‐opetition relationship. The convergence and densification models of buffer interface for Zn surface is the result of cations adaptive adsorption that mitigates the concentration polarization of interfacial Zn<jats:sup>2+</jats:sup> and prevents water contact with electrodes, constituting an indispensable premise for stabilizing both anode and cathode interface. Moreover, unique electrolyte nanostructure achieves Zn crystallographic optimization and fast interfacial reaction kinetics, generating ultralong cycling stability of 5500 h. Therefore, zinc‐organic batteries can exert outstanding stability for over 3000 cycles and 1000 cycles under high current (10 A g<jats:sup>‒1</jats:sup>) and high mass loading (14 mg cm<jats:sup>−2</jats:sup>). Impressively, pouch cell shows an excellent capacity retention of 99.8% with 26.1 mAh after 250 cycles. This study offers a novel perspective for designing electrolyte nanostructures and electrode interfaces for high‐performance Zn batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"10 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405738","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of aqueous Zn batteries is plagued by longevity limited at practical condition, due to the unstable electrode‐electrolyte interface. Here, this work designs an extended‐scale ion agglomeration zone (EIAZ) electrolyte to obtain anion combined with cation structures and reduce water activity. The electrolyte nanostructure features nanometer‐scale depleted water zones in which ion pairs are densely packed together to form EIAZ, which facilitates compact hybrid buffer interface formed via a collective ion transmission process and ionic co‐opetition relationship. The convergence and densification models of buffer interface for Zn surface is the result of cations adaptive adsorption that mitigates the concentration polarization of interfacial Zn2+ and prevents water contact with electrodes, constituting an indispensable premise for stabilizing both anode and cathode interface. Moreover, unique electrolyte nanostructure achieves Zn crystallographic optimization and fast interfacial reaction kinetics, generating ultralong cycling stability of 5500 h. Therefore, zinc‐organic batteries can exert outstanding stability for over 3000 cycles and 1000 cycles under high current (10 A g‒1) and high mass loading (14 mg cm−2). Impressively, pouch cell shows an excellent capacity retention of 99.8% with 26.1 mAh after 250 cycles. This study offers a novel perspective for designing electrolyte nanostructures and electrode interfaces for high‐performance Zn batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过离子聚集区电解质构建用于稳定锌金属电池的紧凑型混合缓冲界面
由于电极-电解质界面不稳定,锌水溶液电池的开发在实际条件下受到寿命限制的困扰。在此,本研究设计了一种扩展尺度离子团聚区(EIAZ)电解质,以获得阴阳离子结合结构并降低水活性。该电解质纳米结构具有纳米尺度的贫水区,离子对密集地聚集在一起形成 EIAZ,这有利于通过集体离子传输过程和离子共竞争关系形成紧凑的混合缓冲界面。Zn 表面缓冲界面的收敛和致密化模型是阳离子自适应吸附的结果,可减轻界面 Zn2+ 的浓度极化,防止水与电极接触,是稳定阳极和阴极界面不可或缺的前提。此外,独特的电解质纳米结构实现了锌晶体学的优化和快速的界面反应动力学,产生了长达 5500 小时的超长循环稳定性。因此,锌-有机电池可以在大电流(10 A g-1)和高负载质量(14 mg cm-2)条件下发挥超过 3000 次循环和 1000 次循环的出色稳定性。令人印象深刻的是,小袋电池在 250 次循环后的容量保持率高达 99.8%,容量为 26.1 mAh。这项研究为设计高性能锌电池的电解质纳米结构和电极界面提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Issue Information Perovskite-Inspired Cs₂AgBi₂I₉: A Promising Photovoltaic Absorber for Diverse Indoor Environments (Adv. Energy Mater. 7/2025) Spring Effect Endowing P-doped Li3VO4 With Long-standing Catalytic Activity for Tuning Cycling Stability of MgH2 (Adv. Energy Mater. 7/2025) High-Performance Quasi-Solid-State Thermogalvanic Cells with Metallized Fibril-Based Textile Electrodes and Structure-Breaking Salts (Adv. Energy Mater. 7/2025) Spatial Confinement Effect of Mineral-Based Colloid Electrolyte Enables Stable Interface Reaction for Aqueous Zinc–Manganese Batteries (Adv. Energy Mater. 7/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1