Synergistic Metal-Support Interactions in Au/GaN Catalysts for Photoelectrochemical Nitrate Reduction to Ammonia

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-02-16 DOI:10.1002/smll.202412089
Wan Jae Dong, Jan Paul Menzel, Zhengwei Ye, Zhuoran Long, Ishtiaque Ahmed Navid, Victor S. Batista, Zetian Mi
{"title":"Synergistic Metal-Support Interactions in Au/GaN Catalysts for Photoelectrochemical Nitrate Reduction to Ammonia","authors":"Wan Jae Dong, Jan Paul Menzel, Zhengwei Ye, Zhuoran Long, Ishtiaque Ahmed Navid, Victor S. Batista, Zetian Mi","doi":"10.1002/smll.202412089","DOIUrl":null,"url":null,"abstract":"Metal-support interactions are crucial in the electrochemical synthesis of ammonia (NH<sub>3</sub>) from nitrate (NO<sub>3</sub><sup>−</sup>) reduction reaction, enabling efficient NH<sub>3</sub> production under mild conditions. However, the complexity of the reaction pathways often limits efficiency. Here, a photoelectrochemical system composed of gold (Au) nanoclusters supported on gallium nitride (GaN) nanowires is introduced, grown on a n<sup>+</sup>-p Si wafer, for selective reduction of NO<sub>3</sub><sup>−</sup> to NH<sub>3</sub> under solar illumination. NO<sub>3</sub><sup>−</sup> ions are preferentially adsorbed and reduced to nitrite (NO<sub>2</sub><sup>−</sup>) on the GaN nanowires, which then transfer to adjacent Au nanoclusters to complete the NH<sub>3</sub> synthesis. This mechanism is confirmed by both experimental data and theoretical calculations. Optimizing the surface coverage and size of Au nanoclusters on the GaN nanowires significantly enhanced catalytic activity compared to that on planar n<sup>+</sup>-p Si photoelectrodes, achieving a faradaic efficiency of 91.8% at −0.4 V<sub>RHE</sub> and a high NH<sub>3</sub> production rate of 131.1 µmol cm<sup>−2</sup> h<sup>−1</sup> at −0.8 V<sub>RHE</sub>. These findings highlight the synergetic effect between metal co-catalysts and semiconductor supports in designing photoelectrodes for multi-step NO<sub>3</sub><sup>−</sup> reduction.","PeriodicalId":228,"journal":{"name":"Small","volume":"48 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412089","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-support interactions are crucial in the electrochemical synthesis of ammonia (NH3) from nitrate (NO3) reduction reaction, enabling efficient NH3 production under mild conditions. However, the complexity of the reaction pathways often limits efficiency. Here, a photoelectrochemical system composed of gold (Au) nanoclusters supported on gallium nitride (GaN) nanowires is introduced, grown on a n+-p Si wafer, for selective reduction of NO3 to NH3 under solar illumination. NO3 ions are preferentially adsorbed and reduced to nitrite (NO2) on the GaN nanowires, which then transfer to adjacent Au nanoclusters to complete the NH3 synthesis. This mechanism is confirmed by both experimental data and theoretical calculations. Optimizing the surface coverage and size of Au nanoclusters on the GaN nanowires significantly enhanced catalytic activity compared to that on planar n+-p Si photoelectrodes, achieving a faradaic efficiency of 91.8% at −0.4 VRHE and a high NH3 production rate of 131.1 µmol cm−2 h−1 at −0.8 VRHE. These findings highlight the synergetic effect between metal co-catalysts and semiconductor supports in designing photoelectrodes for multi-step NO3 reduction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在硝酸盐(NO3-)还原反应电化学合成氨(NH3)的过程中,金属支架之间的相互作用至关重要,可在温和条件下高效生产 NH3。然而,反应途径的复杂性往往限制了效率。在此,我们介绍了一种由氮化镓(GaN)纳米线上支撑的金(Au)纳米团簇组成的光电化学系统,该系统生长在 n+-p 硅晶片上,可在太阳光照射下将 NO3- 选择性还原为 NH3。氮氧化物离子在氮化镓纳米线上优先被吸附并还原成亚硝酸盐(NO2-),然后转移到相邻的金纳米团簇上完成 NH3 的合成。实验数据和理论计算都证实了这一机制。与平面 n+-p 硅光电极相比,优化 GaN 纳米线上金纳米团簇的表面覆盖率和尺寸可显著提高催化活性,在 -0.4 VRHE 条件下,催化效率达到 91.8%,在 -0.8 VRHE 条件下,NH3 生成率高达 131.1 µmol cm-2 h-1。这些发现凸显了金属助催化剂和半导体支持物在设计用于多步还原 NO3- 的光电极方面的协同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Triphenylamine-Based Porous Organic Polymers with High Porosity: their High Carbon-Dioxide Adsorption and Proton-Conductivity Emergence Dual‐Functional Benzotrithiophene‐Based Covalent Organic Frameworks for Photocatalytic Detoxification of Mustard Gas Simulants and Antibacterial Defense Substrate Stabilized Charge Transfer Scheme In Coverage Controlled 2D Metal Organic Frameworks Tailored Anti‐miR Decorated Covalent Organic Framework Enables Electrochemical Detection of Salivary miRNAs for Mild Traumatic Brain Injury Double‐Phase Ga‐Doped In2O3 Nanospheres and Their Self‐Assembled Monolayer Film for Ultrasensitive HCHO MEMS Gas Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1