High-Entropy Layered Double Hydroxides for Efficient Methanol Electrooxidation

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-02-16 DOI:10.1002/smll.202411550
Yuying Wang, Yihang Hu, Zhaohui Wu, Ziheng Song, Xiang Chen, Yu-Fei Song
{"title":"High-Entropy Layered Double Hydroxides for Efficient Methanol Electrooxidation","authors":"Yuying Wang, Yihang Hu, Zhaohui Wu, Ziheng Song, Xiang Chen, Yu-Fei Song","doi":"10.1002/smll.202411550","DOIUrl":null,"url":null,"abstract":"The electrocatalytic methanol oxidation reaction (MOR) is considered as an effective method to replace oxygen evolution reaction (OER) for efficient hydrogen production. However, the sluggish kinetics and the difficulty of breaking C─H bond of the Ni-based catalysts limit further application. Herein, three high-entropy layered double hydroxides (HELHs), namely ZnNiFeCoV-HELH, ZnNiFeCoCr-HELH, and ZnNiFeCoAl-HELH (denoted as V-HELH, Cr-HELH, and Al-HELH, respectively), are successfully synthesized. Among them, the V-HELH displays the lowest potential of 1.39 V at 100 mA cm<sup>−2</sup> compared to Cr-HELH (1.41 V) and Al-HELH (1.44 V). After five cycles, the formate yield of V-HELH maintains over 95% of the first cycle with excellent stability. Such outstanding performance surpasses that of most state-of-the-art MOR catalysts reported so far. A series of experiments reveal that the V-HELH exhibits the fastest reaction kinetics and the largest number of active Ni<sup>3+</sup> species. Further investigations and theoretical calculations prove that the V-HELH shows the strongest methanol adsorption with the lowest energy of −3.31 eV. The introduction of vanadium (V) with relatively larger tensile strain optimizes the d─band center of V-HELH (−0.54 eV) and lowers the energy barrier (−1.62 eV) from <sup>*</sup>CH<sub>3</sub>O to <sup>*</sup>CH<sub>2</sub>O. This work provides new insights for rational design of efficient MOR electrocatalysts.","PeriodicalId":228,"journal":{"name":"Small","volume":"15 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411550","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic methanol oxidation reaction (MOR) is considered as an effective method to replace oxygen evolution reaction (OER) for efficient hydrogen production. However, the sluggish kinetics and the difficulty of breaking C─H bond of the Ni-based catalysts limit further application. Herein, three high-entropy layered double hydroxides (HELHs), namely ZnNiFeCoV-HELH, ZnNiFeCoCr-HELH, and ZnNiFeCoAl-HELH (denoted as V-HELH, Cr-HELH, and Al-HELH, respectively), are successfully synthesized. Among them, the V-HELH displays the lowest potential of 1.39 V at 100 mA cm−2 compared to Cr-HELH (1.41 V) and Al-HELH (1.44 V). After five cycles, the formate yield of V-HELH maintains over 95% of the first cycle with excellent stability. Such outstanding performance surpasses that of most state-of-the-art MOR catalysts reported so far. A series of experiments reveal that the V-HELH exhibits the fastest reaction kinetics and the largest number of active Ni3+ species. Further investigations and theoretical calculations prove that the V-HELH shows the strongest methanol adsorption with the lowest energy of −3.31 eV. The introduction of vanadium (V) with relatively larger tensile strain optimizes the d─band center of V-HELH (−0.54 eV) and lowers the energy barrier (−1.62 eV) from *CH3O to *CH2O. This work provides new insights for rational design of efficient MOR electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电催化甲醇氧化反应(MOR)被认为是取代氧进化反应(OER)实现高效制氢的有效方法。然而,镍基催化剂缓慢的动力学特性和难以断裂 C─H 键的缺点限制了其进一步的应用。本文成功合成了三种高熵层状双氢氧化物(HELHs),即 ZnNiFeCoV-HELH、ZnNiFeCoCr-HELH 和 ZnNiFeCoAl-HELH(分别称为 V-HELH、Cr-HELH 和 Al-HELH)。其中,V-HELH 在 100 mA cm-2 时的电位最低,为 1.39 V,而 Cr-HELH 和 Al-HELH 的电位分别为 1.41 V 和 1.44 V。经过五个循环后,V-HELH 的甲酸盐产率保持在第一个循环的 95% 以上,稳定性极佳。这种出色的性能超过了迄今为止报道的大多数最先进的 MOR 催化剂。一系列实验表明,V-HELH 的反应动力学速度最快,活性 Ni3+ 物种数量最多。进一步的研究和理论计算证明,V-HELH 对甲醇的吸附力最强,能量最低,为 -3.31 eV。钒(V)的引入和相对较大的拉伸应变优化了 V-HELH 的 d─带中心(-0.54 eV),并降低了从 *CH3O 到 *CH2O 的能垒(-1.62 eV)。这项工作为合理设计高效的 MOR 电催化剂提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Amorphous/Crystalline Interface of Bi/Bi4NbO8Cl Heterostructure for Improved Piezo-Photocatalysis Improving the Hydrogenation Performance of Nano-Catalysts by Constructing a Cavity-Constrained Fluidized System Ti3C2Tx-Based Cross-Scale Laminated Structural Structures: Enabling Sub-Wavelength Impedance Modulation and Underwater Broadband Sound Absorption Electron Density Engineering at the Bond Critical Points in Solvation Sheath of Sodium Ions for High-Rate Hard Carbon in Ether-Based Electrolyte Bioinspired Cerium Nanozyme Microenvironment Regulation for Efficient Dephosphorylation and Detection of Organophosphorus Pesticides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1