Robust filling of extra-long gaps in eddy covariance CO2 flux measurements from a temperate deciduous forest using eXtreme Gradient Boosting

IF 5.6 1区 农林科学 Q1 AGRONOMY Agricultural and Forest Meteorology Pub Date : 2025-02-16 DOI:10.1016/j.agrformet.2025.110438
Yujie Liu , Benjamin Lucas , Darby D. Bergl , Andrew D. Richardson
{"title":"Robust filling of extra-long gaps in eddy covariance CO2 flux measurements from a temperate deciduous forest using eXtreme Gradient Boosting","authors":"Yujie Liu ,&nbsp;Benjamin Lucas ,&nbsp;Darby D. Bergl ,&nbsp;Andrew D. Richardson","doi":"10.1016/j.agrformet.2025.110438","DOIUrl":null,"url":null,"abstract":"<div><div>Eddy Covariance measurements are often subject to missing values, or gaps in the data record. Methods to fill short gaps are well-established, but robustly filling gaps longer than a few weeks remains a challenge. Marginal Distribution Sampling (MDS) is a standard gap-filling method, but its effectiveness for long gaps (&gt; 30 days) is limited. We compared the performance of a machine learning algorithm, eXtreme Gradient Boosting (XGB) against MDS, using various artificial scenarios of gap lengths and locations. We gapfilled half hourly CO<sub>2</sub> flux from a temperate deciduous forest, Bartlett Experimental Forest, from 2010 to 2022. Whereas the standard implementation of MDS uses a narrowly-prescribed set of predictor variables, with XGB we were able to include additional variables. The Green Chromatic Coordinate (GCC), derived from PhenoCam imagery, and diffuse photosynthetic photon flux density, emerged as two of the three most important predictor variables. Compared to MDS, the root mean square error (RMSE) of XGB decreased by 9.5 %, and the R<sup>2</sup> increased by 2.7 % in a randomized 10-fold cross validation test. XGB outperformed MDS for both day and night times across different seasons. But annual NEE integrals varied across methods, with weaker annual net carbon uptake, by -110 ± 74 g C m<sup>-2</sup> y<sup>-1</sup> for XGB compared to MDS (214 ± 11 g C m<sup>-2</sup> yr<sup>-1</sup>). In artificial gap experiments, when trained using the 13-year data record, XGB reliably filled gaps, showing little change in RMSE for gaps up to 240 days. In contrast, the performance of MDS steadily decreased as gap lengths increased. MDS was unable to fill gaps longer than 2 months. In summary, XGB demonstrates excellent performance as an alternative method to MDS, providing reliable predictions for temperate deciduous forest carbon fluxes under different gap lengths and location scenarios. Implementation of XGB is facilitated by easy-to-use packages.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"364 ","pages":"Article 110438"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000589","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Eddy Covariance measurements are often subject to missing values, or gaps in the data record. Methods to fill short gaps are well-established, but robustly filling gaps longer than a few weeks remains a challenge. Marginal Distribution Sampling (MDS) is a standard gap-filling method, but its effectiveness for long gaps (> 30 days) is limited. We compared the performance of a machine learning algorithm, eXtreme Gradient Boosting (XGB) against MDS, using various artificial scenarios of gap lengths and locations. We gapfilled half hourly CO2 flux from a temperate deciduous forest, Bartlett Experimental Forest, from 2010 to 2022. Whereas the standard implementation of MDS uses a narrowly-prescribed set of predictor variables, with XGB we were able to include additional variables. The Green Chromatic Coordinate (GCC), derived from PhenoCam imagery, and diffuse photosynthetic photon flux density, emerged as two of the three most important predictor variables. Compared to MDS, the root mean square error (RMSE) of XGB decreased by 9.5 %, and the R2 increased by 2.7 % in a randomized 10-fold cross validation test. XGB outperformed MDS for both day and night times across different seasons. But annual NEE integrals varied across methods, with weaker annual net carbon uptake, by -110 ± 74 g C m-2 y-1 for XGB compared to MDS (214 ± 11 g C m-2 yr-1). In artificial gap experiments, when trained using the 13-year data record, XGB reliably filled gaps, showing little change in RMSE for gaps up to 240 days. In contrast, the performance of MDS steadily decreased as gap lengths increased. MDS was unable to fill gaps longer than 2 months. In summary, XGB demonstrates excellent performance as an alternative method to MDS, providing reliable predictions for temperate deciduous forest carbon fluxes under different gap lengths and location scenarios. Implementation of XGB is facilitated by easy-to-use packages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
期刊最新文献
Two improved shuttleworth-wallace models for estimating consecutive daily evapotranspiration Shifts in soil freeze-thaw cycle and their climate impacts along the alpine wetland-grassland continuum Modeling carbon and water fluxes in agro-pastoral systems under contrasting climates and different management practices Contributions of diffusion and ebullition processes to total methane fluxes from a subtropical rice paddy field in southeastern China The impact of photovoltaic plants on dryland vegetation phenology revealed by time-series remote sensing images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1