Optimization of CdS/MoS2 Photocatalysts for Phonon-Enhanced H2 Evolution via Indirect Transition Modulation in Layer-Dependent MoS2

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-02-16 DOI:10.1002/smll.202411128
Chao Zhang, Zizheng Ai, Xiaolong Xu, Meiling Huang, Zhiliang Xiu, Yongzhong Wu, Yongliang Shao, Xiaopeng Hao
{"title":"Optimization of CdS/MoS2 Photocatalysts for Phonon-Enhanced H2 Evolution via Indirect Transition Modulation in Layer-Dependent MoS2","authors":"Chao Zhang, Zizheng Ai, Xiaolong Xu, Meiling Huang, Zhiliang Xiu, Yongzhong Wu, Yongliang Shao, Xiaopeng Hao","doi":"10.1002/smll.202411128","DOIUrl":null,"url":null,"abstract":"Rational modulation in the transition distribution of electronic band structure is crucial for constructing phonon-induced enhancement effects for efficient charge separation and thus improving the photocatalytic activity of heterogeneous semiconductor systems. Herein, the indirect/direct transition modulation of layer-dependent MoS<sub>2</sub> has been systematically investigated and modeled as a noble metal-free cocatalyst model to study the spatial behavior of carriers in the presence of the phonon effect by coupling it to the direct semiconductor CdS. Consequently, photocarrier separation at the heterojunction interface is greatly facilitated by the optimized band-matching mechanism, while phonon-interfered recombination achieves lifetime extension, which is further elucidated by theoretical simulations. Notably, the water reduction properties of the optimal CdS/MoS<sub>2</sub> system exhibit a striking apparent quantum efficiency (31.33% at 380 nm), with an H<sub>2</sub> evolution rate as high as 9.70 mmol h<sup>−1</sup> g<sup>−1</sup>, which is 7.58 times higher than that of pristine CdS. Overall, this work demonstrates the capability of involved phonons for enhancing charge transfer dynamics, and provides great flexibility for precisely designing superior photocatalytic systems by manipulating the electronic band transformation.","PeriodicalId":228,"journal":{"name":"Small","volume":"10 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411128","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rational modulation in the transition distribution of electronic band structure is crucial for constructing phonon-induced enhancement effects for efficient charge separation and thus improving the photocatalytic activity of heterogeneous semiconductor systems. Herein, the indirect/direct transition modulation of layer-dependent MoS2 has been systematically investigated and modeled as a noble metal-free cocatalyst model to study the spatial behavior of carriers in the presence of the phonon effect by coupling it to the direct semiconductor CdS. Consequently, photocarrier separation at the heterojunction interface is greatly facilitated by the optimized band-matching mechanism, while phonon-interfered recombination achieves lifetime extension, which is further elucidated by theoretical simulations. Notably, the water reduction properties of the optimal CdS/MoS2 system exhibit a striking apparent quantum efficiency (31.33% at 380 nm), with an H2 evolution rate as high as 9.70 mmol h−1 g−1, which is 7.58 times higher than that of pristine CdS. Overall, this work demonstrates the capability of involved phonons for enhancing charge transfer dynamics, and provides great flexibility for precisely designing superior photocatalytic systems by manipulating the electronic band transformation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Amorphous/Crystalline Interface of Bi/Bi4NbO8Cl Heterostructure for Improved Piezo-Photocatalysis Improving the Hydrogenation Performance of Nano-Catalysts by Constructing a Cavity-Constrained Fluidized System Ti3C2Tx-Based Cross-Scale Laminated Structural Structures: Enabling Sub-Wavelength Impedance Modulation and Underwater Broadband Sound Absorption Electron Density Engineering at the Bond Critical Points in Solvation Sheath of Sodium Ions for High-Rate Hard Carbon in Ether-Based Electrolyte Bioinspired Cerium Nanozyme Microenvironment Regulation for Efficient Dephosphorylation and Detection of Organophosphorus Pesticides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1