Iason Baldes, Maximilian Dichtl, Yann Gouttenoire, Filippo Sala
{"title":"Ultrahigh-Energy Particle Collisions and Heavy Dark Matter at Phase Transitions","authors":"Iason Baldes, Maximilian Dichtl, Yann Gouttenoire, Filippo Sala","doi":"10.1103/physrevlett.134.061001","DOIUrl":null,"url":null,"abstract":"We initiate the study of “bubbletrons,” by which we mean ultrahigh-energy collisions of the particle shells that generically form at the walls of relativistic bubbles in cosmological first-order phase transitions (PT). As an application, we calculate the maximal dark matter mass M</a:mi></a:mrow>DM</a:mi></a:mrow></a:msub></a:mrow></a:math> that bubbletrons can produce in a <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>U</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mn>1</c:mn><c:mo stretchy=\"false\">)</c:mo></c:mrow></c:math> gauge PT, finding <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mrow><g:msub><g:mrow><g:mi>M</g:mi></g:mrow><g:mrow><g:mi>DM</g:mi></g:mrow></g:msub><g:mo>∼</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mn>5</g:mn></g:mrow></g:msup><g:mo>/</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mn>11</g:mn></g:mrow></g:msup><g:mo>/</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mn>15</g:mn></g:mrow></g:msup></g:mrow><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:mrow></g:math> for PT scales <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>v</i:mi></i:mrow><i:mrow><i:mi>ϕ</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:msup><i:mrow><i:mn>10</i:mn></i:mrow><i:mrow><i:mo>−</i:mo><i:mn>2</i:mn></i:mrow></i:msup><i:mo>/</i:mo><i:msup><i:mrow><i:mn>10</i:mn></i:mrow><i:mrow><i:mn>3</i:mn></i:mrow></i:msup><i:mo>/</i:mo><i:msup><i:mrow><i:mn>10</i:mn></i:mrow><i:mrow><i:mn>9</i:mn></i:mrow></i:msup><i:mtext> </i:mtext><i:mtext> </i:mtext><i:mi>GeV</i:mi></i:mrow></i:math>. Bubbletrons realize a novel link between ultrahigh-energy phenomena and gravitational waves sourced at the PT, from nanohertz to megahertz frequencies. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"80 3 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.061001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We initiate the study of “bubbletrons,” by which we mean ultrahigh-energy collisions of the particle shells that generically form at the walls of relativistic bubbles in cosmological first-order phase transitions (PT). As an application, we calculate the maximal dark matter mass MDM that bubbletrons can produce in a U(1) gauge PT, finding MDM∼105/1011/1015GeV for PT scales vϕ∼10−2/103/109GeV. Bubbletrons realize a novel link between ultrahigh-energy phenomena and gravitational waves sourced at the PT, from nanohertz to megahertz frequencies. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks