Synergistic interactions between g-C3N4 and Cu–Zn-MOFs via electrostatic assembly for enhanced electrocatalytic CO2 reduction†

IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Dalton Transactions Pub Date : 2025-02-14 DOI:10.1039/D4DT03554B
Xiaoqing Lu, Zhaolong Yue, Hongyu Chen, Siyuan Liu, Shuxian Wei and Zhaojie Wang
{"title":"Synergistic interactions between g-C3N4 and Cu–Zn-MOFs via electrostatic assembly for enhanced electrocatalytic CO2 reduction†","authors":"Xiaoqing Lu, Zhaolong Yue, Hongyu Chen, Siyuan Liu, Shuxian Wei and Zhaojie Wang","doi":"10.1039/D4DT03554B","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalytic carbon dioxide reduction (eCO<small><sub>2</sub></small>R) represents a sustainable technique for converting CO<small><sub>2</sub></small> into valuable chemicals and fuels. Metal–organic frameworks (MOFs) are recognized as promising candidates in eCO<small><sub>2</sub></small>R due to their favorable adsorption of CO<small><sub>2</sub></small>. However, the insufficiency of adequate active sites restricts their in-depth investigation. Herein, inspired by the interfacial electronic effects, the layered g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> with unpaired electron characteristics is integrated into Cu–Zn-MOFs with nucleophilic imidazolate ligands <em>via</em> electrostatic assembly. The resultant g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>@Cu–Zn-MOFs-1 : 1 exhibits excellent CO<small><sub>2</sub></small> reduction performance for CO in a wide potential range, where the peak faradaic efficiency reaches 85% at −1.3 V. g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> with a graphitic carbon backbone significantly stabilizes the Cu–Zn-MOF structure and enhances the exposure of active sites. The excellent performance stems from the significant activation of active sites by the efficient electron transfer induced by π–π stacking interactions between g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> and Cu–Zn-MOFs-1 : 1. This work proposes an innovative approach to stabilizing MOFs and activating the active sites in MOFs through interfacial electron engineering for CO<small><sub>2</sub></small> reduction.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 12","pages":" 4956-4964"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dt/d4dt03554b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic carbon dioxide reduction (eCO2R) represents a sustainable technique for converting CO2 into valuable chemicals and fuels. Metal–organic frameworks (MOFs) are recognized as promising candidates in eCO2R due to their favorable adsorption of CO2. However, the insufficiency of adequate active sites restricts their in-depth investigation. Herein, inspired by the interfacial electronic effects, the layered g-C3N4 with unpaired electron characteristics is integrated into Cu–Zn-MOFs with nucleophilic imidazolate ligands via electrostatic assembly. The resultant g-C3N4@Cu–Zn-MOFs-1 : 1 exhibits excellent CO2 reduction performance for CO in a wide potential range, where the peak faradaic efficiency reaches 85% at −1.3 V. g-C3N4 with a graphitic carbon backbone significantly stabilizes the Cu–Zn-MOF structure and enhances the exposure of active sites. The excellent performance stems from the significant activation of active sites by the efficient electron transfer induced by π–π stacking interactions between g-C3N4 and Cu–Zn-MOFs-1 : 1. This work proposes an innovative approach to stabilizing MOFs and activating the active sites in MOFs through interfacial electron engineering for CO2 reduction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
g-C3N4与cu - zn - mof通过静电组装协同作用增强电催化CO2还原
电催化二氧化碳还原(eCO2R)是一种将二氧化碳转化为有价值的化学品和燃料的可持续技术。金属-有机框架(MOFs)材料由于其良好的CO2吸附性能而被认为是eCO2R中很有前途的候选材料。然而,缺乏足够的活性位点限制了其深入研究。在界面电子效应的启发下,通过静电组装将具有不成对电子特征的层状g-C3N4集成到具有亲核咪唑酸配体的cu - zn - mof中。所得g-C3N4@Cu-Zn-MOFs-1:1在较宽的电位范围内对CO表现出优异的CO2还原性能,在-1.3 V时法拉第效率峰值达到85%。石墨碳骨架的g-C3N4对cu - zn - mof结构具有明显的稳定作用,增强了活性位点的暴露。g-C3N4与Cu-Zn-MOFs-1:1之间π-π堆叠相互作用诱导了有效的电子转移,从而显著激活了活性位点。本研究提出了一种通过界面电子工程来稳定mof和激活mof中活性位点的创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
期刊最新文献
Ni(II)-oxalate on plastic-derived carbon: a green platform for furfural diacetal synthesis. Reservoir Effect in bichromophoric FeIII Complexes with Methylene Bridge Inhibition of PHPT1 by phenylarsonic acids Structural Features and Antibacterial Activity of Ni(II) Thiosemicarbazones in a Zirconium Meta-Organic Framework Composite Ligand decorated nickel-based nanoparticles supported onto MXenes in catalytic hydrogenation of N-heterocycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1