Methane Pyrolysis for Hydrogen Production: Navigating the Path to a Net Zero Future

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-02-14 DOI:10.1039/d4ee06191h
Alireza Lotfollahzade Moghaddam, Sohrab Hejazi, Moslem Fattahi, Md Golam Kibria, Murray Thomson, Rashed AlEisa, Mohd Adnan Khan
{"title":"Methane Pyrolysis for Hydrogen Production: Navigating the Path to a Net Zero Future","authors":"Alireza Lotfollahzade Moghaddam, Sohrab Hejazi, Moslem Fattahi, Md Golam Kibria, Murray Thomson, Rashed AlEisa, Mohd Adnan Khan","doi":"10.1039/d4ee06191h","DOIUrl":null,"url":null,"abstract":"The global push to keep global warming to less than 1.5 ºC, will require us to quickly adopt zero-emission energy carriers. Hydrogen, a versatile energy vector, is pivotal in this transition, especially for sectors that are challenging to electrify. Methane pyrolysis is emerging as a promising route for producing hydrogen with minimal greenhouse gas emissions. In this review, we provide a comprehensive overview of methane pyrolysis, and explore its potential to contribute to a net-zero future. Current hydrogen production methods, including steam methane reforming and water electrolysis, are also discussed in terms of efficiency, emissions, and costs for comparison with methane pyrolysis. The review then delves into the various technologies under development for methane pyrolysis, categorizing them into catalytic and non-catalytic routes. Key aspects such as reactor design, catalyst performance, and economic viability are critically examined. We also analyze the importance of the carbon co-product produced in the process, and its market potential. Finally, by evaluating industrial activities around methane pyrolysis, this paper underscores its role in the global energy transition, emphasizing the requirements to overcome current challenges and achieve large-scale deployment.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"12 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee06191h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The global push to keep global warming to less than 1.5 ºC, will require us to quickly adopt zero-emission energy carriers. Hydrogen, a versatile energy vector, is pivotal in this transition, especially for sectors that are challenging to electrify. Methane pyrolysis is emerging as a promising route for producing hydrogen with minimal greenhouse gas emissions. In this review, we provide a comprehensive overview of methane pyrolysis, and explore its potential to contribute to a net-zero future. Current hydrogen production methods, including steam methane reforming and water electrolysis, are also discussed in terms of efficiency, emissions, and costs for comparison with methane pyrolysis. The review then delves into the various technologies under development for methane pyrolysis, categorizing them into catalytic and non-catalytic routes. Key aspects such as reactor design, catalyst performance, and economic viability are critically examined. We also analyze the importance of the carbon co-product produced in the process, and its market potential. Finally, by evaluating industrial activities around methane pyrolysis, this paper underscores its role in the global energy transition, emphasizing the requirements to overcome current challenges and achieve large-scale deployment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
CsPbI2Br Quantum Dots Integration for High Performance Organic Photovoltaics and Photodetectors Achieving Unprecedented Power-Output in 4-Terminal Mirror-Symmetrical Printable Carbon CsPbBr3 Solar Cells through Dual-Solvent Engineering Advancing All-Perovskite Two-Terminal Tandem Solar Cells: Optimization of Wide- and Narrow-Bandgap Perovskites and Interconnecting Layers Molecular Design of High-performance Wide-bandgap Acceptor Enables Versatile Organic Photovoltaic Applications Tailoring zinc diatomic bidirectional catalysts achieving orbital coupling–hybridization for ultralong-cycling zinc–iodine batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1