Experimental Evidence of Curvature Gradient Driven Domain Wall Automotion

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-02-16 DOI:10.1002/smll.202407084
Eider Berganza, Felipe Tejo, Guilherme H. R. Bittencourt, Vagson L. Carvalho-Santos, Oksana Chubykalo-Fesenko, Agustina Asenjo
{"title":"Experimental Evidence of Curvature Gradient Driven Domain Wall Automotion","authors":"Eider Berganza,&nbsp;Felipe Tejo,&nbsp;Guilherme H. R. Bittencourt,&nbsp;Vagson L. Carvalho-Santos,&nbsp;Oksana Chubykalo-Fesenko,&nbsp;Agustina Asenjo","doi":"10.1002/smll.202407084","DOIUrl":null,"url":null,"abstract":"<p>Curvature and geometry have significant implications in fundamental physics, leading to the appearance of intriguing novel phenomena. In the field of nanomagnetism, geometrical-induced effects yield important consequences, which, despite their relevance for domain wall (DW) motion-based applications, still await experimental validation. In this letter, a spiral-shaped magnetic nanostructure is used to demonstrate experimentally that curvature gradients determine DW motion. A saturating magnetic field is applied to the spirals to induce the magnetic onion state, generating head-to-head (HtH) and tail-to-tail (TtT) DW. Curvature gradient promotes domain wall motion through a local curvature-dependent effective force, toward regions of higher curvature. These effects have been studied by measuring depinning fields and supported by micromagnetic simulations and an analytical model. Our results show the potential of curvature engineering for the realization of low-energy spintronic devices.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 12","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202407084","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Curvature and geometry have significant implications in fundamental physics, leading to the appearance of intriguing novel phenomena. In the field of nanomagnetism, geometrical-induced effects yield important consequences, which, despite their relevance for domain wall (DW) motion-based applications, still await experimental validation. In this letter, a spiral-shaped magnetic nanostructure is used to demonstrate experimentally that curvature gradients determine DW motion. A saturating magnetic field is applied to the spirals to induce the magnetic onion state, generating head-to-head (HtH) and tail-to-tail (TtT) DW. Curvature gradient promotes domain wall motion through a local curvature-dependent effective force, toward regions of higher curvature. These effects have been studied by measuring depinning fields and supported by micromagnetic simulations and an analytical model. Our results show the potential of curvature engineering for the realization of low-energy spintronic devices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
曲率梯度驱动域壁自动机的实验证据
曲率和几何在基础物理学中有着重要的意义,导致了有趣的新现象的出现。在纳米磁性领域,几何诱导效应产生了重要的结果,尽管它们与基于畴壁(DW)运动的应用相关,但仍有待实验验证。在这封信中,一个螺旋形的磁性纳米结构被用来实验证明曲率梯度决定DW运动。在螺旋上施加饱和磁场诱导磁洋葱状态,产生头对头(HtH)和尾对尾(TtT) DW。曲率梯度通过局部曲率相关的有效作用力促进区域壁面向更高曲率区域的运动。这些影响已经通过测量脱屑场进行了研究,并得到了微磁模拟和分析模型的支持。我们的研究结果显示了曲率工程在实现低能自旋电子器件方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Large‐Scale Cooperative Sulfur Vacancy Dynamics in Two‐Dimensional Mos 2 From Machine Learning Interatomic Potentials Multidimensional Oriented Piezoelectric Conduits for Peripheral Nerve Defect Regeneration Defect‐Morphology Dual Strategy to Achieve Coral‐Like La 1‐ x Ni 0.5‐y Fe 0.5 O 3‐δ /NiO Bifunctional Catalysts for High‐Performance Li‐O 2 Batteries Blue‐Light‐Excited Cyan‐Emitting Carbon‐Dot‐Ormosil Gel for Blue‐Overshoot Mitigation and Cyan‐Gap Bridging in WLEDs Mechanistic Insights into Cathode Degradation During Startup‐Shutdown of PEM Water Electrolysis and Mitigation via Semi‐Embedded Pt/CeO x
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1