{"title":"Bio-Inspired, Miniaturized Magnetic Heart Valve System for Superior Performance Cardiovascular Simulator","authors":"Jeongmin Yoo, Gooyoon Chung, Yoonseok Park","doi":"10.1002/adma.202419504","DOIUrl":null,"url":null,"abstract":"The demand for accurate vascular simulators is increasing to facilitate effective clinical studies on cardiovascular diseases. The research presents the miniaturized design and precise programable regulation of an artificial magnetic heart valve inspired by the human aortic valve, demonstrating the diverse types of pulsating waves. The heart valve is constructed using an elastomeric silicone composite embedded with neodymium magnetic micro-particles. This valve system responds rapidly to changes in magnetic fields controlled by miniaturized electromagnets, enabling precise regulation of fluid pressure and flow rate. This allows for the generation of various pressure waveforms and accurately replicates diverse blood pressure changes with a compact design. The design, working mechanism, fabrication process, and optimization of the magnetically controlled biomimetic heart valve are discussed and its performance as a cardiovascular simulator for human and animal models is evaluated. This artificial valve system has the potential to be utilized in humanoid robots to generate heart-like pressure, thereby paving the way for replicating human physiological characteristics. This research promises significant advancements in cardiovascular clinical trials and biomedical research along with the development of humanoid robots and biomimetic mechanical systems.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"15 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419504","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for accurate vascular simulators is increasing to facilitate effective clinical studies on cardiovascular diseases. The research presents the miniaturized design and precise programable regulation of an artificial magnetic heart valve inspired by the human aortic valve, demonstrating the diverse types of pulsating waves. The heart valve is constructed using an elastomeric silicone composite embedded with neodymium magnetic micro-particles. This valve system responds rapidly to changes in magnetic fields controlled by miniaturized electromagnets, enabling precise regulation of fluid pressure and flow rate. This allows for the generation of various pressure waveforms and accurately replicates diverse blood pressure changes with a compact design. The design, working mechanism, fabrication process, and optimization of the magnetically controlled biomimetic heart valve are discussed and its performance as a cardiovascular simulator for human and animal models is evaluated. This artificial valve system has the potential to be utilized in humanoid robots to generate heart-like pressure, thereby paving the way for replicating human physiological characteristics. This research promises significant advancements in cardiovascular clinical trials and biomedical research along with the development of humanoid robots and biomimetic mechanical systems.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.