A PD-L1 siRNA-Loaded Boron Nanoparticle for Targeted Cancer Radiotherapy and Immunotherapy

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-16 DOI:10.1002/adma.202419418
Shaohui Deng, Lijun Hu, Guo Chen, Jujian Ye, Zecong Xiao, Tianwang Guan, Shuai Guo, Wei Xia, Du Cheng, Xiaochun Wan, Ke Cheng, Caiwen Ou
{"title":"A PD-L1 siRNA-Loaded Boron Nanoparticle for Targeted Cancer Radiotherapy and Immunotherapy","authors":"Shaohui Deng, Lijun Hu, Guo Chen, Jujian Ye, Zecong Xiao, Tianwang Guan, Shuai Guo, Wei Xia, Du Cheng, Xiaochun Wan, Ke Cheng, Caiwen Ou","doi":"10.1002/adma.202419418","DOIUrl":null,"url":null,"abstract":"Although the combination of radiotherapy and immunotherapy is regarded as a promising clinical treatment strategy, numerous clinical trials have failed to demonstrate synergistic effects. One of the key reasons is that conventional radiotherapies inevitably damage intratumoral effector immune cells. Boron Neutron Capture Therapy (BNCT) is a precise radiotherapy that selectively kills tumor cells while sparing adjacent normal cells, by utilizing <sup>10</sup>B agents and neutron irradiation. Therefore, combinational BNCT-immunotherapy holds promise for achieving more effective synergistic effects. Here it develops a <sup>10</sup>B-containing polymer that self-assembled with PD-L1 siRNA to form <sup>10</sup>B/siPD-L1 nanoparticles for combinational BNCT-immunotherapy. Unlike antibodies, PD-L1 siRNA can inhibit intracellular PD-L1 upregulated by BNCT, activating T-cell immunity while also suppressing DNA repair. This can enhance BNCT-induced DNA damage, promoting immunogenic cell death (ICD) and further amplifying the antitumor immune effect. The results demonstrated that BNCT using <sup>10</sup>B/siPD-L1 nanoparticles precisely killed tumor cells while sparing adjacent T cells and induced a potent antitumor immune response, inhibiting distal and metastatic tumors.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"85 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419418","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although the combination of radiotherapy and immunotherapy is regarded as a promising clinical treatment strategy, numerous clinical trials have failed to demonstrate synergistic effects. One of the key reasons is that conventional radiotherapies inevitably damage intratumoral effector immune cells. Boron Neutron Capture Therapy (BNCT) is a precise radiotherapy that selectively kills tumor cells while sparing adjacent normal cells, by utilizing 10B agents and neutron irradiation. Therefore, combinational BNCT-immunotherapy holds promise for achieving more effective synergistic effects. Here it develops a 10B-containing polymer that self-assembled with PD-L1 siRNA to form 10B/siPD-L1 nanoparticles for combinational BNCT-immunotherapy. Unlike antibodies, PD-L1 siRNA can inhibit intracellular PD-L1 upregulated by BNCT, activating T-cell immunity while also suppressing DNA repair. This can enhance BNCT-induced DNA damage, promoting immunogenic cell death (ICD) and further amplifying the antitumor immune effect. The results demonstrated that BNCT using 10B/siPD-L1 nanoparticles precisely killed tumor cells while sparing adjacent T cells and induced a potent antitumor immune response, inhibiting distal and metastatic tumors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于癌症放射治疗和免疫治疗的 PD-L1 siRNA 负载硼纳米粒子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon-Xanthone Systems Epitaxial Ferroelectric Hexagonal Boron Nitride Grown on Graphene CuPt Alloy Enabling the Tandem Catalysis for Reduction of HCOOH and NO3− to Urea at High Current Density Giant and Anisotropic Enhancement of Spin-Charge Conversion in Graphene-Based Quantum System High-Entropy 1T-Phase Quantum Sheets of Transition-Metal Disulfides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1