Ultra-Fast Gallium Oxide Solar-Blind Photodetector with Novel Thermal Pulse Treatment

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-16 DOI:10.1002/adma.202414130
Lili Luo, Hong Huang, Lu Yang, Rui Hao, Xiaoliang Hu, Yingtao Li, Xiaolong Zhao, Zemin Zhang, Shibing Long
{"title":"Ultra-Fast Gallium Oxide Solar-Blind Photodetector with Novel Thermal Pulse Treatment","authors":"Lili Luo, Hong Huang, Lu Yang, Rui Hao, Xiaoliang Hu, Yingtao Li, Xiaolong Zhao, Zemin Zhang, Shibing Long","doi":"10.1002/adma.202414130","DOIUrl":null,"url":null,"abstract":"Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) emerges as a promising solar-blind photodetector (SBPD) material if the “Response Speed (RS) dilemma” can be resolved. Devices with spatially segregated carrier generation and transport channels offer a potential solution but remain less available. This work introduces a novel thermal pulse treatment (TPT) method to achieve a vertically stratified crystalline structure and oxygen vacancies (V<sub>O</sub>) throughout the Ga<sub>2</sub>O<sub>3</sub> film, validated through extensive characterizations. Technology Computer-Aided Design (TCAD) simulations corroborated the critical role of V<sub>O</sub> stratification in enhancing the responsivity (R<sub>λ</sub>) and response speed simultaneously. Consequently, the TPT-processed SBPD exhibited exceptional performance, boasting a maximum <i>R</i><sub>λ</sub> of 312.6 A W<sup>−1</sup> and a faster decay time of 40 µs, respectively. Moreover, the corresponding SBPD chips show significant potential for applications in solar-blind imaging, light trajectory tracking, and solar-blind power meters. This work thus provides a viable strategy to address the “RS dilemma” common in most wide-bandgap materials, showcasing excellent application value.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"11 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414130","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gallium oxide (Ga2O3) emerges as a promising solar-blind photodetector (SBPD) material if the “Response Speed (RS) dilemma” can be resolved. Devices with spatially segregated carrier generation and transport channels offer a potential solution but remain less available. This work introduces a novel thermal pulse treatment (TPT) method to achieve a vertically stratified crystalline structure and oxygen vacancies (VO) throughout the Ga2O3 film, validated through extensive characterizations. Technology Computer-Aided Design (TCAD) simulations corroborated the critical role of VO stratification in enhancing the responsivity (Rλ) and response speed simultaneously. Consequently, the TPT-processed SBPD exhibited exceptional performance, boasting a maximum Rλ of 312.6 A W−1 and a faster decay time of 40 µs, respectively. Moreover, the corresponding SBPD chips show significant potential for applications in solar-blind imaging, light trajectory tracking, and solar-blind power meters. This work thus provides a viable strategy to address the “RS dilemma” common in most wide-bandgap materials, showcasing excellent application value.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用新型热脉冲处理技术的超快氧化镓太阳盲光电探测器
如果能解决 "响应速度(RS)难题",氧化镓(Ga2O3)将成为一种前景广阔的日盲光电探测器(SBPD)材料。具有空间隔离载流子生成和传输通道的器件提供了一种潜在的解决方案,但其可用性仍然较低。这项工作介绍了一种新颖的热脉冲处理 (TPT) 方法,可在整个 Ga2O3 薄膜中实现垂直分层晶体结构和氧空位 (VO),并通过广泛的表征进行了验证。技术计算机辅助设计(TCAD)模拟证实了氧空位分层在同时提高响应率(Rλ)和响应速度方面的关键作用。因此,经过 TPT 处理的 SBPD 表现出卓越的性能,最大 Rλ 分别达到 312.6 A W-1 和更快的 40 µs 衰减时间。此外,相应的 SBPD 芯片在日光盲区成像、光轨迹跟踪和日光盲区功率计等应用中显示出巨大的潜力。因此,这项研究为解决大多数宽带隙材料普遍存在的 "RS 困境 "提供了一种可行的策略,展示了卓越的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon-Xanthone Systems Epitaxial Ferroelectric Hexagonal Boron Nitride Grown on Graphene CuPt Alloy Enabling the Tandem Catalysis for Reduction of HCOOH and NO3− to Urea at High Current Density Giant and Anisotropic Enhancement of Spin-Charge Conversion in Graphene-Based Quantum System High-Entropy 1T-Phase Quantum Sheets of Transition-Metal Disulfides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1