DNA-Capturing Manganese-Coordinated Chitosan Microparticles Potentiate Radiotherapy via Activating the cGAS-STING Pathway and Maintaining Tumor-Infiltrating CD8+ T-Cell Stemness

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-16 DOI:10.1002/adma.202418583
Shuai Zhang, Chunjie Wang, Yujie Zhu, Juxin Gao, Yifan Yan, Minming Chen, Xiaoying Yan, Zhuang Liu, Liangzhu Feng
{"title":"DNA-Capturing Manganese-Coordinated Chitosan Microparticles Potentiate Radiotherapy via Activating the cGAS-STING Pathway and Maintaining Tumor-Infiltrating CD8+ T-Cell Stemness","authors":"Shuai Zhang, Chunjie Wang, Yujie Zhu, Juxin Gao, Yifan Yan, Minming Chen, Xiaoying Yan, Zhuang Liu, Liangzhu Feng","doi":"10.1002/adma.202418583","DOIUrl":null,"url":null,"abstract":"The radiotherapy-induced release of DNA fragments can stimulate the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway to prime antitumor immunity, but this pathway is expected to be less potent because of the inefficient cytosolic delivery of negatively charged DNA fragments. In this study, manganese-coordinated chitosan (CS-Mn) microparticles with selective DNA-capturing capacity are concisely prepared via a coordination-directed one-pot synthesis process to potentiate the immunogenicity of radiotherapy. The obtained CS-Mn microparticles that undergo rapid disassembly under physiological conditions can selectively bind with DNA to form positively charged DNA-CS assemblies because of the strong electrostatic interaction between linear chitosan and DNA molecules. They thus enable efficient cytosolic delivery of DNA in the presence of serum to cooperate with Mn<sup>2+</sup> to activate the cGAS-STING pathway in dendritic cells. Upon intratumoral injection, the CS-Mn microparticles markedly enhance the efficacy of radiotherapy against both irradiated and distal tumors in different tumor models via collectively promoting tumor-infiltrating CD8<sup>+</sup> T-cell stemness and the activation of innate immunity. The radiosensitization effect of CS-Mn microparticles can be further augmented by concurrently applying anti-programmed cell death protein 1 (anti-PD-1) immunotherapy. This work highlights an ingenious strategy to prepare Trojan horse-like DNA-capturing microparticles as cGAS-STING-activating radiosensitizers for effective radioimmunotherapy.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"48 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202418583","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The radiotherapy-induced release of DNA fragments can stimulate the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway to prime antitumor immunity, but this pathway is expected to be less potent because of the inefficient cytosolic delivery of negatively charged DNA fragments. In this study, manganese-coordinated chitosan (CS-Mn) microparticles with selective DNA-capturing capacity are concisely prepared via a coordination-directed one-pot synthesis process to potentiate the immunogenicity of radiotherapy. The obtained CS-Mn microparticles that undergo rapid disassembly under physiological conditions can selectively bind with DNA to form positively charged DNA-CS assemblies because of the strong electrostatic interaction between linear chitosan and DNA molecules. They thus enable efficient cytosolic delivery of DNA in the presence of serum to cooperate with Mn2+ to activate the cGAS-STING pathway in dendritic cells. Upon intratumoral injection, the CS-Mn microparticles markedly enhance the efficacy of radiotherapy against both irradiated and distal tumors in different tumor models via collectively promoting tumor-infiltrating CD8+ T-cell stemness and the activation of innate immunity. The radiosensitization effect of CS-Mn microparticles can be further augmented by concurrently applying anti-programmed cell death protein 1 (anti-PD-1) immunotherapy. This work highlights an ingenious strategy to prepare Trojan horse-like DNA-capturing microparticles as cGAS-STING-activating radiosensitizers for effective radioimmunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA捕获锰配位壳聚糖微粒通过激活cGAS-STING通路和维持肿瘤浸润CD8+T细胞干性增强放疗效果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon-Xanthone Systems Epitaxial Ferroelectric Hexagonal Boron Nitride Grown on Graphene CuPt Alloy Enabling the Tandem Catalysis for Reduction of HCOOH and NO3− to Urea at High Current Density Giant and Anisotropic Enhancement of Spin-Charge Conversion in Graphene-Based Quantum System High-Entropy 1T-Phase Quantum Sheets of Transition-Metal Disulfides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1