Cryo-Shocked Tumor-Reprogrammed Sonosensitive Antigen-Presenting Cells Improving Sonoimmunotherapy via T Cells and NK Cells Immunity

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-16 DOI:10.1002/adma.202413289
Xindi Qian, Wenzhe Yi, Wenlu Yan, Ying Cai, Shuangshuang Hu, Dan Yan, Zhiwen Zhao, Rongzhang Li, Liying Wang, Huixiong Xu, Yaping Li
{"title":"Cryo-Shocked Tumor-Reprogrammed Sonosensitive Antigen-Presenting Cells Improving Sonoimmunotherapy via T Cells and NK Cells Immunity","authors":"Xindi Qian, Wenzhe Yi, Wenlu Yan, Ying Cai, Shuangshuang Hu, Dan Yan, Zhiwen Zhao, Rongzhang Li, Liying Wang, Huixiong Xu, Yaping Li","doi":"10.1002/adma.202413289","DOIUrl":null,"url":null,"abstract":"Ultrasound therapy has turned up as a noninvasive multifunctional tool for cancer immunotherapy. However, the insufficient co-stimulating molecules and loss of peptide-major histocompatibility complex I (MHC-I) expression on tumor cells lead to poor therapy of sonoimmunotherapies. Herein, this work develops a sonosensitive system to augment MHC-I unrestricted natural killer (NK) cell-mediated innate immunity and T cell-mediated adaptive immunity by leveraging antigen presentation cell (APC)-like tumor cells. Genetically engineered tumor cells featuring sufficient co-stimulating molecules are cryo-shocked and conjugated with a sonosensitizer, hematoporphyrin monomethyl ether, using click chemistry. These cells (DPNLs) exhibit characteristics of tumor and draining lymph node homing. Under ultrasound, NK cell-mediated innate immunity within the tumor microenvironment could be activated, and T cells in the tumor-draining lymph nodes (TDLNs) are stimulated through co-stimulatory molecules. In combination with programmed cell death ligand 1 (PD-L1) antibody, DPNLs extend the survival time and inhibited lung metastasis in triple-negative breast cancer (TNBC) models. This study provides an alternative approach for sonoimmunotherapy with precise sonosensitizer delivery and enhanced NK cell and T cell activation.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"64 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413289","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound therapy has turned up as a noninvasive multifunctional tool for cancer immunotherapy. However, the insufficient co-stimulating molecules and loss of peptide-major histocompatibility complex I (MHC-I) expression on tumor cells lead to poor therapy of sonoimmunotherapies. Herein, this work develops a sonosensitive system to augment MHC-I unrestricted natural killer (NK) cell-mediated innate immunity and T cell-mediated adaptive immunity by leveraging antigen presentation cell (APC)-like tumor cells. Genetically engineered tumor cells featuring sufficient co-stimulating molecules are cryo-shocked and conjugated with a sonosensitizer, hematoporphyrin monomethyl ether, using click chemistry. These cells (DPNLs) exhibit characteristics of tumor and draining lymph node homing. Under ultrasound, NK cell-mediated innate immunity within the tumor microenvironment could be activated, and T cells in the tumor-draining lymph nodes (TDLNs) are stimulated through co-stimulatory molecules. In combination with programmed cell death ligand 1 (PD-L1) antibody, DPNLs extend the survival time and inhibited lung metastasis in triple-negative breast cancer (TNBC) models. This study provides an alternative approach for sonoimmunotherapy with precise sonosensitizer delivery and enhanced NK cell and T cell activation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声波疗法已成为癌症免疫疗法的一种非侵入性多功能工具。然而,辅助刺激分子的不足和肿瘤细胞上多肽-主要组织相容性复合体 I(MHC-I)表达的缺失导致超声免疫疗法的治疗效果不佳。在此,这项研究开发了一种声敏感系统,通过利用抗原呈递细胞(APC)样肿瘤细胞,增强 MHC-I 不受限制的自然杀伤细胞(NK)介导的先天性免疫和 T 细胞介导的适应性免疫。基因工程肿瘤细胞具有足够的协同刺激分子,经低温震荡后,利用点击化学方法与一种声敏剂--血卟啉单甲醚--共轭。这些细胞(DPNLs)表现出肿瘤和引流淋巴结归巢的特征。在超声波作用下,肿瘤微环境中由 NK 细胞介导的先天性免疫可被激活,而肿瘤引流淋巴结(TDLNs)中的 T 细胞则会通过共刺激分子受到刺激。DPNLs与程序性细胞死亡配体1(PD-L1)抗体结合使用,可延长三阴性乳腺癌(TNBC)模型的生存时间并抑制肺转移。这项研究为声波免疫疗法提供了另一种方法,即精确传递声波增敏剂并增强 NK 细胞和 T 细胞的活化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon-Xanthone Systems Epitaxial Ferroelectric Hexagonal Boron Nitride Grown on Graphene CuPt Alloy Enabling the Tandem Catalysis for Reduction of HCOOH and NO3− to Urea at High Current Density Giant and Anisotropic Enhancement of Spin-Charge Conversion in Graphene-Based Quantum System High-Entropy 1T-Phase Quantum Sheets of Transition-Metal Disulfides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1