Nanocomposite hydrogel orchestrating multiple modulation of degenerative microenvironment for potential application in intervertebral disc regeneration

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-02-14 DOI:10.1016/j.jmst.2024.12.042
Huitong Luo, Zhipeng Sun, Zetao Wang, Wanqing Lun, Qi Feng, Dafu Chen, Xiaodong Cao
{"title":"Nanocomposite hydrogel orchestrating multiple modulation of degenerative microenvironment for potential application in intervertebral disc regeneration","authors":"Huitong Luo, Zhipeng Sun, Zetao Wang, Wanqing Lun, Qi Feng, Dafu Chen, Xiaodong Cao","doi":"10.1016/j.jmst.2024.12.042","DOIUrl":null,"url":null,"abstract":"Effective treatment of intervertebral disc degeneration with biomaterials remains a challenge, owing to the difficulty in simultaneously overcoming oxidative stress and its associated cascades in the nucleus pulposus microenvironment, which includes cellular senescence, apoptosis, inflammation, and extracellular matrix (ECM) degradation. To address these issues, a multifunctional hydrogel (HG-QNT) loaded with transforming growth factor-<em>β</em>1 (TGF-<em>β</em>1) and quercetin-based nanoparticles (QUNPs) is developed through borate ester bonding and Schiff base reaction-induced crosslinking. Specifically, QUNPs fabricated via coordination and hydrophobic interactions endow the hydrogel with extraordinary antioxidative properties. Benefiting from the multi-dynamic crosslinking, the hydrogel achieves self-healing, mechanical stability, and pH-responsive release of QUNPs and TGF-<em>β</em>1. The HG-QNT hydrogel is demonstrated to enhance the proliferation of encapsulated nucleus pulposus cells, thereby providing an ideal platform for cell transplantation. The cooperative antioxidation of QUNPs and the hydrogel carrier renders HG-QNT effective in mitigating oxidative stress, resulting in the suppression of cellular senescence, mitochondrial dysfunction, apoptosis, excessive inflammation, and abnormal catabolism. Afterwards, TGF-<em>β</em>1 and QUNPs act in synergy with the hydrogel to restore the anabolic/catabolic balance by enhancing ECM synthesis. Overall, the strategy orchestrating multiple modulation by HG-QNT hydrogel shows great potential for application in intervertebral disc regeneration.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"25 1 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.042","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective treatment of intervertebral disc degeneration with biomaterials remains a challenge, owing to the difficulty in simultaneously overcoming oxidative stress and its associated cascades in the nucleus pulposus microenvironment, which includes cellular senescence, apoptosis, inflammation, and extracellular matrix (ECM) degradation. To address these issues, a multifunctional hydrogel (HG-QNT) loaded with transforming growth factor-β1 (TGF-β1) and quercetin-based nanoparticles (QUNPs) is developed through borate ester bonding and Schiff base reaction-induced crosslinking. Specifically, QUNPs fabricated via coordination and hydrophobic interactions endow the hydrogel with extraordinary antioxidative properties. Benefiting from the multi-dynamic crosslinking, the hydrogel achieves self-healing, mechanical stability, and pH-responsive release of QUNPs and TGF-β1. The HG-QNT hydrogel is demonstrated to enhance the proliferation of encapsulated nucleus pulposus cells, thereby providing an ideal platform for cell transplantation. The cooperative antioxidation of QUNPs and the hydrogel carrier renders HG-QNT effective in mitigating oxidative stress, resulting in the suppression of cellular senescence, mitochondrial dysfunction, apoptosis, excessive inflammation, and abnormal catabolism. Afterwards, TGF-β1 and QUNPs act in synergy with the hydrogel to restore the anabolic/catabolic balance by enhancing ECM synthesis. Overall, the strategy orchestrating multiple modulation by HG-QNT hydrogel shows great potential for application in intervertebral disc regeneration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米复合水凝胶可对退变微环境进行多重调节,有望应用于椎间盘再生
利用生物材料有效治疗椎间盘退变仍是一项挑战,因为很难同时克服氧化应激及其在髓核微环境中的相关级联反应,包括细胞衰老、凋亡、炎症和细胞外基质(ECM)降解。为了解决这些问题,我们通过硼酸酯键合和席夫碱反应诱导交联,开发出了一种负载有转化生长因子-β1(TGF-β1)和槲皮素基纳米颗粒(QUNPs)的多功能水凝胶(HG-QNT)。具体来说,通过配位和疏水相互作用制成的 QUNPs 使水凝胶具有非凡的抗氧化特性。得益于多动力交联,水凝胶实现了自愈合、机械稳定性以及 QUNPs 和 TGF-β1 的 pH 响应释放。实验证明,HG-QNT 水凝胶能促进包裹的髓核细胞增殖,从而为细胞移植提供了一个理想的平台。QUNPs 和水凝胶载体的协同抗氧化作用使 HG-QNT 能够有效减轻氧化应激,从而抑制细胞衰老、线粒体功能障碍、细胞凋亡、过度炎症和异常分解代谢。之后,TGF-β1 和 QUNPs 与水凝胶协同作用,通过增强 ECM 合成来恢复合成代谢平衡。总之,HG-QNT 水凝胶协调多重调节的策略在椎间盘再生中显示出巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
JC-1 probe
索莱宝
DCFH-DA probe
上海源叶
Hyaluronate sodium
阿拉丁
Titanium sulfate
阿拉丁
Potassium persulfate
阿拉丁
Hydrogen peroxide
阿拉丁
Ferrous sulfate
阿拉丁
3,3′,5,5′-tetramethylbenzidine
阿拉丁
2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid ammonium salt
阿拉丁
2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl
阿拉丁
Sodium periodate
阿拉丁
Adipic acid dihydrazide
阿拉丁
3-aminophenylboronic acid
阿拉丁
1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride
阿拉丁
2-(4-morpholinyl) ethanesulfonic acid hydrate
阿拉丁
4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
阿拉丁
Dimethyl sulfoxide
阿拉丁
Iron (III) chloride hexahydrate
阿拉丁
Quercetin
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Breaking Kinetic Bottlenecks in Alkaline HER with a Cu-Co Alloy/N-Doped MoO2 Heterointerface Catalyst The structure-bonding-property paradigm in thermoelectrics: Microscale insights from correlative characterization The large electrocaloric effect with broad operational temperature Range in (Ba,Sr)(Hf,Ti)O3 systems achieved through La3+-induced ferroelectric phase transition for miniaturized solid-state refrigeration Constructing grain boundary complexes for high-efficiency and strengthened Ag2Se thermoelectrics Additive-manufactured nanoscale lamellar architecture enables enhanced dynamic damage resistance in an AlCoCrFeNi2.1 eutectic high-entropy alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1