Zhan Xu , Ning Zhao , Yan Yan , Shigen Gao , Stuart Hillmansen
{"title":"Electric-thermal collaborative system and control for hydrogen-fuel cell passenger trains in the UK’s winter","authors":"Zhan Xu , Ning Zhao , Yan Yan , Shigen Gao , Stuart Hillmansen","doi":"10.1016/j.enconman.2025.119629","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a quantitative study on electric-thermal collaborative system for hydrogen-powered train, reutilising the waste heat from fuel cell system for Heating, Ventilation and Air Conditioning (HVAC). Firstly, a hybrid train simulator is developed to simulate the train’s motion state. Heat generation from fuel cell is estimated using a fuel cell model, while a detailed thermodynamic model for railway passenger coach is established to predict the heat demand. Furthermore, an electric-thermal collaborative energy management strategy (ETC-EMS) is proposed for the system to comprehensively optimise the on-train power distribution considering traction and auxiliary power. Finally, comparative analysis is performed among the train with electric heater (EH), heat pump (HP) and heat pump-heat reuse (HP-HR). The results demonstrate that, over a round trip, the proposed HP-HR with ETC-EMS recovers over 22.88% residual heat and saves 16.17% of hydrogen consumption. For the daily operation, it reduces hydrogen and energy consumption by 12.06% and 12.82 %, respectively. The findings indicate that collaborative optimisation brings significant improvements on the global energy utilisation. The proposed design with ETC-EMS is potential to further enhance the economic viability of hydrail and contributes to the rail decarbonisation.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"328 ","pages":"Article 119629"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425001529","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a quantitative study on electric-thermal collaborative system for hydrogen-powered train, reutilising the waste heat from fuel cell system for Heating, Ventilation and Air Conditioning (HVAC). Firstly, a hybrid train simulator is developed to simulate the train’s motion state. Heat generation from fuel cell is estimated using a fuel cell model, while a detailed thermodynamic model for railway passenger coach is established to predict the heat demand. Furthermore, an electric-thermal collaborative energy management strategy (ETC-EMS) is proposed for the system to comprehensively optimise the on-train power distribution considering traction and auxiliary power. Finally, comparative analysis is performed among the train with electric heater (EH), heat pump (HP) and heat pump-heat reuse (HP-HR). The results demonstrate that, over a round trip, the proposed HP-HR with ETC-EMS recovers over 22.88% residual heat and saves 16.17% of hydrogen consumption. For the daily operation, it reduces hydrogen and energy consumption by 12.06% and 12.82 %, respectively. The findings indicate that collaborative optimisation brings significant improvements on the global energy utilisation. The proposed design with ETC-EMS is potential to further enhance the economic viability of hydrail and contributes to the rail decarbonisation.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.