A novel framework for accurate, automated and dynamic global lake mapping based on optical imagery

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL ISPRS Journal of Photogrammetry and Remote Sensing Pub Date : 2025-02-16 DOI:10.1016/j.isprsjprs.2025.02.008
Tao Zhou , Guoqing Zhang , Jida Wang , Zhe Zhu , R.Iestyn Woolway , Xiaoran Han , Fenglin Xu , Jun Peng
{"title":"A novel framework for accurate, automated and dynamic global lake mapping based on optical imagery","authors":"Tao Zhou ,&nbsp;Guoqing Zhang ,&nbsp;Jida Wang ,&nbsp;Zhe Zhu ,&nbsp;R.Iestyn Woolway ,&nbsp;Xiaoran Han ,&nbsp;Fenglin Xu ,&nbsp;Jun Peng","doi":"10.1016/j.isprsjprs.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate, consistent, and long-term monitoring of global lake dynamics is essential for understanding the impacts of climate change and human activities on water resources and ecosystems. However, existing methods often require extensive manually collected training data and expert knowledge to delineate accurate water extents of various lake types under different environmental conditions, limiting their applicability in data-poor regions and scenarios requiring rapid mapping responses (e.g., lake outburst floods) and frequent monitoring (e.g., highly dynamic reservoir operations). This study presents a novel remote sensing framework for automated global lake mapping using optical imagery, combining single-date and time-series algorithms to address these challenges. The single-date algorithm leverages a multi-objects superposition approach to automatically generate high-quality training sample, enabling robust machine learning-based lake boundary delineation with minimal manual intervention. This innovative approach overcomes the challenge of obtaining representative training sample across diverse environmental contexts and flexibly adapts to the images to be classified. Building upon this, the time-series algorithm incorporates dynamic mapping area adjustment, robust cloud and snow filtering, and time-series analysis, maximizing available clear imagery (&gt;80 %) and optimizing the temporal frequency and spatial accuracy of the produced lake area time series. The framework’s effectiveness is validated by Landsat imagery using globally representative and locally focused test datasets. The automatically generated training sample achieves commission and omission rates of ∼1 % compared to manually collected sample. The resulting single-date lake mapping demonstrates overall accuracy exceeding 96 % and a Mean Percentage Error of &lt;4 % relative to manually delineated lake areas. Additionally, the proposed framework shows improvement in mapping smaller and fractional ice-covered lakes over existing lake products. The mapped lake time series are consistent with the reconstructed products over the long term, while effectively avoiding spurious changes due to data source and processing uncertainties in the short term. This robust, automated framework is valuable for generating accurate, large-scale, and temporally dynamic lake maps to support global lake inventories and monitoring. The framework’s modular design also allows for future adaptation to other optical sensors such as Sentinel-2 and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, facilitating multi-source data fusion and enhanced surface water mapping capabilities.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"221 ","pages":"Pages 280-298"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625000589","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate, consistent, and long-term monitoring of global lake dynamics is essential for understanding the impacts of climate change and human activities on water resources and ecosystems. However, existing methods often require extensive manually collected training data and expert knowledge to delineate accurate water extents of various lake types under different environmental conditions, limiting their applicability in data-poor regions and scenarios requiring rapid mapping responses (e.g., lake outburst floods) and frequent monitoring (e.g., highly dynamic reservoir operations). This study presents a novel remote sensing framework for automated global lake mapping using optical imagery, combining single-date and time-series algorithms to address these challenges. The single-date algorithm leverages a multi-objects superposition approach to automatically generate high-quality training sample, enabling robust machine learning-based lake boundary delineation with minimal manual intervention. This innovative approach overcomes the challenge of obtaining representative training sample across diverse environmental contexts and flexibly adapts to the images to be classified. Building upon this, the time-series algorithm incorporates dynamic mapping area adjustment, robust cloud and snow filtering, and time-series analysis, maximizing available clear imagery (>80 %) and optimizing the temporal frequency and spatial accuracy of the produced lake area time series. The framework’s effectiveness is validated by Landsat imagery using globally representative and locally focused test datasets. The automatically generated training sample achieves commission and omission rates of ∼1 % compared to manually collected sample. The resulting single-date lake mapping demonstrates overall accuracy exceeding 96 % and a Mean Percentage Error of <4 % relative to manually delineated lake areas. Additionally, the proposed framework shows improvement in mapping smaller and fractional ice-covered lakes over existing lake products. The mapped lake time series are consistent with the reconstructed products over the long term, while effectively avoiding spurious changes due to data source and processing uncertainties in the short term. This robust, automated framework is valuable for generating accurate, large-scale, and temporally dynamic lake maps to support global lake inventories and monitoring. The framework’s modular design also allows for future adaptation to other optical sensors such as Sentinel-2 and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, facilitating multi-source data fusion and enhanced surface water mapping capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光学图像的精确、自动和动态全球湖泊制图新框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
期刊最新文献
Simulation-aided similarity-aware feature alignment with meta-adaption optimization for SAR ATR under extended operation conditions GV-iRIOM: GNSS-visual-aided 4D radar inertial odometry and mapping in large-scale environments CIDM: A comprehensive inpainting diffusion model for missing weather radar data with knowledge guidance A novel framework for accurate, automated and dynamic global lake mapping based on optical imagery Cross-modal semantic transfer for point cloud semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1