Activation flotation and activating mechanism of cyanide-depressed pyrite using sodium persulfate and ferrous sulfate

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL Minerals Engineering Pub Date : 2025-02-14 DOI:10.1016/j.mineng.2025.109206
Qinzhi Yuan , Mengyu Wang , Changliang Shi , Ji Fang , Xianhui Qiu , Tingsheng Qiu
{"title":"Activation flotation and activating mechanism of cyanide-depressed pyrite using sodium persulfate and ferrous sulfate","authors":"Qinzhi Yuan ,&nbsp;Mengyu Wang ,&nbsp;Changliang Shi ,&nbsp;Ji Fang ,&nbsp;Xianhui Qiu ,&nbsp;Tingsheng Qiu","doi":"10.1016/j.mineng.2025.109206","DOIUrl":null,"url":null,"abstract":"<div><div>Cyanide tailings were produced by cyanidation gold extraction and normally contained a large amount of unrecovered valuable metals. At present, there are few pieces of research on the activation flotation recovery of useful minerals in cyanidation tailings. In this paper, the activation flotation of cyanide-depressed pyrite using sodium persulfate (PDS) and ferrous sulfate (Fe(II)) was systematically studied by microflotation tests. The activating mechanism was analyzed by FTIR spectroscopy, zeta potential measurement and electron paramagnetic resonance (EPR) analysis. The microflotation tests showed that pyrite flotation was deeply depressed in the presence of sodium cyanide (NaCN). The flotation of cyanide-depressed pyrite could be largely improved by the addition of individual PDS or combined PDS and Fe(II). The dosage of combined PDS and Fe(II) was lower and their activating effect was better than using PDS alone. Zeta potential measurements and FTIR analysis revealed that NaCN was adsorbed on the pyrite surface to generate the hydrophilic ferricyanide, which can reduce the pyrite floatability. The individual PDS or combined PDS and Fe(II) could react with ferricyanide to destroy the hydrophilic adsorption layer and restore the hydrophobicity of pyrite surface. EPR analysis indicated that the oxidation system of pyrite with combined PDS and Fe(II) could produce more powerful SO<sub>4</sub><sup>−</sup>• and HO• than individual PDS. The radical scavenging experiments further confirmed that the generating free radicals were the active species for the destruction of ferricyanide and reduction of the activator dosage.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"224 ","pages":"Article 109206"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687525000342","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cyanide tailings were produced by cyanidation gold extraction and normally contained a large amount of unrecovered valuable metals. At present, there are few pieces of research on the activation flotation recovery of useful minerals in cyanidation tailings. In this paper, the activation flotation of cyanide-depressed pyrite using sodium persulfate (PDS) and ferrous sulfate (Fe(II)) was systematically studied by microflotation tests. The activating mechanism was analyzed by FTIR spectroscopy, zeta potential measurement and electron paramagnetic resonance (EPR) analysis. The microflotation tests showed that pyrite flotation was deeply depressed in the presence of sodium cyanide (NaCN). The flotation of cyanide-depressed pyrite could be largely improved by the addition of individual PDS or combined PDS and Fe(II). The dosage of combined PDS and Fe(II) was lower and their activating effect was better than using PDS alone. Zeta potential measurements and FTIR analysis revealed that NaCN was adsorbed on the pyrite surface to generate the hydrophilic ferricyanide, which can reduce the pyrite floatability. The individual PDS or combined PDS and Fe(II) could react with ferricyanide to destroy the hydrophilic adsorption layer and restore the hydrophobicity of pyrite surface. EPR analysis indicated that the oxidation system of pyrite with combined PDS and Fe(II) could produce more powerful SO4• and HO• than individual PDS. The radical scavenging experiments further confirmed that the generating free radicals were the active species for the destruction of ferricyanide and reduction of the activator dosage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
期刊最新文献
Editorial Board The effect of hydrogen pre-reduction on the carbon-reducibility of pelletised UG2 chromite Mechanism of quartz flotation separation from gypsum using tetradecyl trimethyl ammonium chloride: Guiding the improvement of phosphogypsum quality Mitigating contaminated mine drainage through mine waste rock decontamination: A strategy for promoting cleaner and sustainable management Fourth generation gravity separation using the Reflux Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1