Determining Norton creep properties from small punch creep tests by using the representative stress–strain method and inverse approach

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL Theoretical and Applied Fracture Mechanics Pub Date : 2025-02-11 DOI:10.1016/j.tafmec.2025.104876
Li Xie , Feng Yu , Mingcheng Sun , Yingzhi Li
{"title":"Determining Norton creep properties from small punch creep tests by using the representative stress–strain method and inverse approach","authors":"Li Xie ,&nbsp;Feng Yu ,&nbsp;Mingcheng Sun ,&nbsp;Yingzhi Li","doi":"10.1016/j.tafmec.2025.104876","DOIUrl":null,"url":null,"abstract":"<div><div>The small punch creep test (SPCT) emerges as an innovative technique for evaluating the creep properties of materials. Although the existing standards, such as CWA 15627 and EN 10371, establishes empirical correlations between SPCT and uniaxial creep tests (UCT), the complexity inherent to SPCT mandates an empirical approach that is both material-specific and labor-intensive for achieving precision. This paper introduces a novel methodology that synthesizes the representative stress–strain method with inverse finite element analysis to extract Norton creep properties of metallic materials directly from small punch test (SPT) and SPCT. The representative stress–strain method to SPT facilitates the determination of elasto-plastic properties at elevated temperatures, enabling a streamlined prediction of Norton creep law parameters by the inverse approach of SPCT. Notably, this methodology circumvents the need for intermediate UCT conversions, thereby providing a more efficient and accurate pathway for directly obtaining Norton creep properties from SPT and SPCT. Experimental validation conducted on P91 and P92NT steels at 600°C confirms a strong correlation between the predicted Norton creep properties and those obtained from UCT, underscoring the practicality and accuracy of the proposed approach.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"137 ","pages":"Article 104876"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844225000345","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The small punch creep test (SPCT) emerges as an innovative technique for evaluating the creep properties of materials. Although the existing standards, such as CWA 15627 and EN 10371, establishes empirical correlations between SPCT and uniaxial creep tests (UCT), the complexity inherent to SPCT mandates an empirical approach that is both material-specific and labor-intensive for achieving precision. This paper introduces a novel methodology that synthesizes the representative stress–strain method with inverse finite element analysis to extract Norton creep properties of metallic materials directly from small punch test (SPT) and SPCT. The representative stress–strain method to SPT facilitates the determination of elasto-plastic properties at elevated temperatures, enabling a streamlined prediction of Norton creep law parameters by the inverse approach of SPCT. Notably, this methodology circumvents the need for intermediate UCT conversions, thereby providing a more efficient and accurate pathway for directly obtaining Norton creep properties from SPT and SPCT. Experimental validation conducted on P91 and P92NT steels at 600°C confirms a strong correlation between the predicted Norton creep properties and those obtained from UCT, underscoring the practicality and accuracy of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
期刊最新文献
Editorial Board Experimental study of internal deformation in 3D solids with embedded parallel cracks during the fracture process using multi-material 3D printing and stereo digital image correlation Experimental study on fracture behavior of coal-rock samples with varying sandstone strength using the ultrafast time-resolution method Macro-meso crack propagation characteristics and safety performance assessment of flawed rock mass Dynamic compressive micro-macro fracture mechanism with the water-saturated strengthening and weakening effect in brittle rocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1