Qianqian Niu , Junjie Shen , Wenhao Liang , Suna Fan , Xiang Yao , Haifeng Wei , Yaopeng Zhang
{"title":"Fully biodegradable ion-induced silk fibroin-based triboelectric nanogenerators with enhanced performance prevent muscle atrophy","authors":"Qianqian Niu , Junjie Shen , Wenhao Liang , Suna Fan , Xiang Yao , Haifeng Wei , Yaopeng Zhang","doi":"10.1016/j.biomaterials.2025.123185","DOIUrl":null,"url":null,"abstract":"<div><div>Applying electrical stimulation (ES) on nerve or muscle denervation can significantly restore the nerve function and prevent muscle atrophy. The triboelectric nanogenerator (TENG) can couple the mechanical energy and electrical energy for ES. However, the triboelectric performance of fully biodegradable TENGs and the effect of ES need to be optimized and verified. Here, the triboelectric performance of silk fibroin (SF) is regulated by ions to fabricate SF-TENGs with full biodegradability, good biocompatibility, and excellent output. This SF-TENG shows a good electrostimulation recovery effect and is used for function restoration of the injured sciatic nerve and innervated muscle. Li<sup>+</sup> effectively improves the dielectric constant and increases the positively charged ability of SF. The highest output power density of SF-TENG is 128 mW/m<sup>2</sup>, which is superior to most reported fully biodegradable TENGs. The morphology, protein expression levels, neural/muscular function are assessed to evaluate the recovery of damaged nerves and innervated muscle. The function restoration of the injured nerve and innervated muscle under ES of SF-TENG is significantly close to the normal nerve and muscle. This TENG has great potential to achieve <em>in vivo</em> energy generation, ES, and biodegradability as an implantable electrical stimulator for the therapy of nerve, muscle, and tissue injury.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"318 ","pages":"Article 123185"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001048","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Applying electrical stimulation (ES) on nerve or muscle denervation can significantly restore the nerve function and prevent muscle atrophy. The triboelectric nanogenerator (TENG) can couple the mechanical energy and electrical energy for ES. However, the triboelectric performance of fully biodegradable TENGs and the effect of ES need to be optimized and verified. Here, the triboelectric performance of silk fibroin (SF) is regulated by ions to fabricate SF-TENGs with full biodegradability, good biocompatibility, and excellent output. This SF-TENG shows a good electrostimulation recovery effect and is used for function restoration of the injured sciatic nerve and innervated muscle. Li+ effectively improves the dielectric constant and increases the positively charged ability of SF. The highest output power density of SF-TENG is 128 mW/m2, which is superior to most reported fully biodegradable TENGs. The morphology, protein expression levels, neural/muscular function are assessed to evaluate the recovery of damaged nerves and innervated muscle. The function restoration of the injured nerve and innervated muscle under ES of SF-TENG is significantly close to the normal nerve and muscle. This TENG has great potential to achieve in vivo energy generation, ES, and biodegradability as an implantable electrical stimulator for the therapy of nerve, muscle, and tissue injury.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.