{"title":"A precise conformally mapped method for water waves in complex transient environments","authors":"Andreas H. Akselsen","doi":"10.1016/j.jcp.2025.113848","DOIUrl":null,"url":null,"abstract":"<div><div>A two-dimensional water wave model based on conformal mapping is presented. The model is exact in the sense that it does not rely on truncated series expansions, nor suffer any numerical diffusion. Additionally, it is computationally highly efficient as it numerically evaluates only the surface line while using a fixed number of FFT operations per time step. A double layered mapping enforces prescribed outer boundaries without iteration. The model also supports transient boundaries, including walls. Mapping models are presented that support smooth bathymetries and angled overhanging geometries. An exact piston-type wavemaker model demonstrates the method's potential as a numerical wave tank. The model is tested and validated through a number of examples covering shallow water waves, wavemaker generation, rising bathymetry shelves, and wave reflection from slanting structures. A paddle-type wavemaker model, developed from the present theory, will be detailed in a forthcoming paper.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"528 ","pages":"Article 113848"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001317","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A two-dimensional water wave model based on conformal mapping is presented. The model is exact in the sense that it does not rely on truncated series expansions, nor suffer any numerical diffusion. Additionally, it is computationally highly efficient as it numerically evaluates only the surface line while using a fixed number of FFT operations per time step. A double layered mapping enforces prescribed outer boundaries without iteration. The model also supports transient boundaries, including walls. Mapping models are presented that support smooth bathymetries and angled overhanging geometries. An exact piston-type wavemaker model demonstrates the method's potential as a numerical wave tank. The model is tested and validated through a number of examples covering shallow water waves, wavemaker generation, rising bathymetry shelves, and wave reflection from slanting structures. A paddle-type wavemaker model, developed from the present theory, will be detailed in a forthcoming paper.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.