Phenotypic responses of the giant mussel Choromytilus chorus to prolonged upwelling conditions

IF 3.2 2区 农林科学 Q1 FISHERIES Aquaculture Reports Pub Date : 2025-02-16 DOI:10.1016/j.aqrep.2025.102680
Sebastián I. Martel , Nicolás J. Leppes , Nelson A. Lagos , Cristian A. Vargas , Marco A. Lardies
{"title":"Phenotypic responses of the giant mussel Choromytilus chorus to prolonged upwelling conditions","authors":"Sebastián I. Martel ,&nbsp;Nicolás J. Leppes ,&nbsp;Nelson A. Lagos ,&nbsp;Cristian A. Vargas ,&nbsp;Marco A. Lardies","doi":"10.1016/j.aqrep.2025.102680","DOIUrl":null,"url":null,"abstract":"<div><div>Marine bivalve aquaculture is increasingly recognized as a sustainable alternative to mitigate potential animal protein shortages for human consumption. However, coastal aquaculture systems are susceptible to consequences of global change, including the projected increased duration of upwelling events within Eastern Boundary Upwelling Systems. These events can cause rapid environmental fluctuations that affect the biology of marine species including cultivable ones. This study investigates the phenotypic responses of the giant mussel <em>Choromytilus chorus</em>, an underutilized but promising shellfish species cultivated off the southern coast of Chile, to four laboratory-controlled combinations of temperature and pH conditions simulating the upwelling system they experience in farms. Our results show a remarkable capacity of this species to thrive in otherwise stressful environments. Notably, even under unprecedented warm and acidified conditions, juvenile individuals can effectively adjust their physiological state by elevating their rate of energy expenditure and increasing their feeding capacity. This plastic response allowed mussels to reduce the potentially negative consequences reported at an organismal level in other species, maintaining calcification and growth rates, and adjusting their periostracum's organic composition to an increased protein content under acidified conditions, thereby aiding shell production in a corrosive environment. Overall, our results underscore the potential for using suitably adapted cultivable species for food production in future changing scenarios.</div></div>","PeriodicalId":8103,"journal":{"name":"Aquaculture Reports","volume":"41 ","pages":"Article 102680"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Reports","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352513425000663","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Marine bivalve aquaculture is increasingly recognized as a sustainable alternative to mitigate potential animal protein shortages for human consumption. However, coastal aquaculture systems are susceptible to consequences of global change, including the projected increased duration of upwelling events within Eastern Boundary Upwelling Systems. These events can cause rapid environmental fluctuations that affect the biology of marine species including cultivable ones. This study investigates the phenotypic responses of the giant mussel Choromytilus chorus, an underutilized but promising shellfish species cultivated off the southern coast of Chile, to four laboratory-controlled combinations of temperature and pH conditions simulating the upwelling system they experience in farms. Our results show a remarkable capacity of this species to thrive in otherwise stressful environments. Notably, even under unprecedented warm and acidified conditions, juvenile individuals can effectively adjust their physiological state by elevating their rate of energy expenditure and increasing their feeding capacity. This plastic response allowed mussels to reduce the potentially negative consequences reported at an organismal level in other species, maintaining calcification and growth rates, and adjusting their periostracum's organic composition to an increased protein content under acidified conditions, thereby aiding shell production in a corrosive environment. Overall, our results underscore the potential for using suitably adapted cultivable species for food production in future changing scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture Reports
Aquaculture Reports Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
5.90
自引率
8.10%
发文量
469
审稿时长
77 days
期刊介绍: Aquaculture Reports will publish original research papers and reviews documenting outstanding science with a regional context and focus, answering the need for high quality information on novel species, systems and regions in emerging areas of aquaculture research and development, such as integrated multi-trophic aquaculture, urban aquaculture, ornamental, unfed aquaculture, offshore aquaculture and others. Papers having industry research as priority and encompassing product development research or current industry practice are encouraged.
期刊最新文献
Detection of favorable QTL alleles and candidate genes for high pH tolerance in Chinese shrimp Fenneropenaeus chinensis via association and linkage maps Effect of land-based suspension conditions on the culture of the Rhodophyta Bangia fuscopurpurea Development and evaluation of a haplotype reference panel for low-coverage whole genome sequencing genotype imputation in turbot (Scophthalmus maximus) Assessing factors affecting smallholder earthen pond fish farming in the varied climates of the Rwenzori Region, Uganda The immunomodulatory effects of L-carnitine on the immune responses induced by LPS and transplantation in the pearl oyster Pinctada fucata martensii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1