Controls on the termination of the massive chert system in the Ediacaran-Cambrian Liuchapo Formation, South China

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Precambrian Research Pub Date : 2025-02-14 DOI:10.1016/j.precamres.2025.107729
Yuxuan Wang , Fang Hao , Yangbo Lu , Kaixun Zhang , Yan Ye , Shang Xu
{"title":"Controls on the termination of the massive chert system in the Ediacaran-Cambrian Liuchapo Formation, South China","authors":"Yuxuan Wang ,&nbsp;Fang Hao ,&nbsp;Yangbo Lu ,&nbsp;Kaixun Zhang ,&nbsp;Yan Ye ,&nbsp;Shang Xu","doi":"10.1016/j.precamres.2025.107729","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread deposition of marine siliceous rocks marks a fundamental shift in the ancient ocean’s biogeochemical dynamics, transitioning from Precambrian systems dominated by direct inorganic silica precipitation as the primary silicon sink to modern environments where microbial processes strongly govern silica dissolution. The massive Liuchapo chert in the Nanhua Basin, South China, formed during the Ediacaran–Cambrian transition (ECT, ∼550–521 Ma), a critical interval of silicon cycle perturbations, rapid multicellular diversification, and significant environmental change. Its abrupt termination, followed by the widespread deposition of Niutitang black shales without a depositional hiatus, reflects a fundamental shift in the oceanic silicon cycle, linked to profound marine environmental evolution and dynamic biotic responses during the key period of the ECT. However, the biogeochemical processes driving the cessation of chert deposition remain poorly understood. Here, we present high-resolution geochemical data from the XAD1 borehole, situated in an an outer slope setting of the Nanhua Basin to assess controls on the termination of this widespread marine chert system. Our multi-proxy approach, including iron speciation, redox-sensitive trace metal analyses, and rare earth elements plus yttrium (REE + Y) systematics documents a highly fluctuated redox condition between oxic to ferruginous throughout the Liuchapo Formation, before giving way to persistent euxinic conditions in the lower Niutitang Formation. Hydrothermal activity likely played a key role in the Liuchapo chert formation, while its subsequent decline, coupled with the onset of euxinic conditions, weakened the Fe-Si loop essential for chert deposition. Furthermore, the emergence of silica-secreting organisms may have reduced dissolved silicon levels, further driving the cessation of chert deposition. These findings provide new insights into the environmental and biological factors controlling the termination of the Liuchapo massive chert system, contributing to a deeper understanding of the complex geochemical and ecological dynamics during this pivotal period in Earth’s history.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"419 ","pages":"Article 107729"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926825000555","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread deposition of marine siliceous rocks marks a fundamental shift in the ancient ocean’s biogeochemical dynamics, transitioning from Precambrian systems dominated by direct inorganic silica precipitation as the primary silicon sink to modern environments where microbial processes strongly govern silica dissolution. The massive Liuchapo chert in the Nanhua Basin, South China, formed during the Ediacaran–Cambrian transition (ECT, ∼550–521 Ma), a critical interval of silicon cycle perturbations, rapid multicellular diversification, and significant environmental change. Its abrupt termination, followed by the widespread deposition of Niutitang black shales without a depositional hiatus, reflects a fundamental shift in the oceanic silicon cycle, linked to profound marine environmental evolution and dynamic biotic responses during the key period of the ECT. However, the biogeochemical processes driving the cessation of chert deposition remain poorly understood. Here, we present high-resolution geochemical data from the XAD1 borehole, situated in an an outer slope setting of the Nanhua Basin to assess controls on the termination of this widespread marine chert system. Our multi-proxy approach, including iron speciation, redox-sensitive trace metal analyses, and rare earth elements plus yttrium (REE + Y) systematics documents a highly fluctuated redox condition between oxic to ferruginous throughout the Liuchapo Formation, before giving way to persistent euxinic conditions in the lower Niutitang Formation. Hydrothermal activity likely played a key role in the Liuchapo chert formation, while its subsequent decline, coupled with the onset of euxinic conditions, weakened the Fe-Si loop essential for chert deposition. Furthermore, the emergence of silica-secreting organisms may have reduced dissolved silicon levels, further driving the cessation of chert deposition. These findings provide new insights into the environmental and biological factors controlling the termination of the Liuchapo massive chert system, contributing to a deeper understanding of the complex geochemical and ecological dynamics during this pivotal period in Earth’s history.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
华南埃迪卡拉-寒武系柳滩组块状燧石体系终结的控制因素
海相硅质岩的广泛沉积标志着古代海洋生物地球化学动力学的根本转变,从以无机硅直接沉淀为主要硅汇的前寒武纪系统转变为微生物作用强烈控制硅溶解的现代环境。华南华南盆地大规模柳chapo燧石岩形成于埃迪卡拉-寒武系过渡时期(ECT, ~ 550 ~ 521 Ma),这是一个硅旋回扰动、多细胞快速多样化和显著环境变化的关键时期。它的突然终止,随之而来的是牛铁塘黑色页岩的广泛沉积,没有沉积间断,这反映了海洋硅旋回的根本转变,与ECT关键时期深刻的海洋环境演化和动态生物响应有关。然而,驱动燧石沉积停止的生物地球化学过程仍然知之甚少。在这里,我们提供了来自XAD1井的高分辨率地球化学数据,该井位于南华盆地的外斜坡环境中,以评估这种广泛的海相燧石体系终止的控制因素。我们的多代理方法,包括铁的形态、氧化还原敏感的痕量金属分析和稀土元素加钇(REE + Y)的系统学,证明了在牛蹄塘组下部为持续的氧化还原条件之前,整个流草坡组的氧化还原条件在氧-铁之间高度波动。热液活动可能在柳滩燧石形成中发挥了关键作用,而热液活动随后的减弱,加上缺氧条件的开始,削弱了燧石沉积所必需的铁硅环。此外,分泌硅的生物的出现可能降低了溶解硅的水平,进一步推动了燧石沉积的停止。这些发现为进一步认识控制六岔坡块状燧石体系终结的环境和生物因素提供了新的认识,有助于我们对地球历史上这一关键时期复杂的地球化学和生态动力学有更深入的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Precambrian Research
Precambrian Research 地学-地球科学综合
CiteScore
7.20
自引率
28.90%
发文量
325
审稿时长
12 months
期刊介绍: Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as: (1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology; (2) Geochronology and isotope and elemental geochemistry; (3) Precambrian mineral deposits; (4) Geophysical aspects of the early Earth and Precambrian terrains; (5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes. In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes. Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.
期刊最新文献
Neoarchean ultrahigh-temperature metamorphism in the Saglek–Hebron Complex, northern Labrador Editorial Board Paleoproterozoic tectonic evolution of the Dunhuang Block, eastern Tarim: insights from geochronology and petrogenesis of meta-igneous rocks Petrogenesis and tectonic implications of the Neoarchean metavolcanic rocks in the southeast Yinshan Block, north China Craton (NCC): Constraints from U–Pb–Hf–Nd isotopes and geochemistry Spatial analysis of Beltanelliformis (Nemiana) in Baltica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1