{"title":"Development of Machine Learning-Aided Rapid CFD Prediction for Optimal Urban Wind Environment Design","authors":"Aiymzhan Baitureyeva , Tong Yang , Hua Sheng Wang","doi":"10.1016/j.scs.2025.106208","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a Machine Learning (ML) model based on Computational Fluid Dynamics (CFD), developed to quickly and accurately predict the impact of buildings on the urban wind environment. While CFD simulations are effective for wind studies, such as analyzing wind loads, pedestrian comfort, and pollution dispersion, they require significant computational resources and time. Recently, Machine Learning has demonstrated strong potential in providing accurate and immediate predictions by learning from datasets. By training on CFD-generated data, the ML model can quickly produce accurate and physically consistent results, addressing the limitations of CFD methods. The Reynolds-Averaged Navier-Stokes (RANS) turbulence model was chosen for CFD simulations, which were validated against experimental data, with mesh sensitivity analyzed at a wind speed of 3 m/s. A dataset of 300 cases, involving 100 hypothetical buildings and three wind speeds (3, 4, and 5 m/s), was generated to train the ML model. A multi-output regression model was proposed to effectively predict key parameters—wind velocity, turbulence intensity, and CO₂ mass fraction—in the selected urban domain. The Random Forest algorithm, which best represented the CFD results, was selected for model development. The ML model demonstrated high efficiency on new data, achieving 88-96% accuracy. This work offers a fast and precise prediction tool, valuable for urban design and related applications.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"121 ","pages":"Article 106208"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221067072500085X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a Machine Learning (ML) model based on Computational Fluid Dynamics (CFD), developed to quickly and accurately predict the impact of buildings on the urban wind environment. While CFD simulations are effective for wind studies, such as analyzing wind loads, pedestrian comfort, and pollution dispersion, they require significant computational resources and time. Recently, Machine Learning has demonstrated strong potential in providing accurate and immediate predictions by learning from datasets. By training on CFD-generated data, the ML model can quickly produce accurate and physically consistent results, addressing the limitations of CFD methods. The Reynolds-Averaged Navier-Stokes (RANS) turbulence model was chosen for CFD simulations, which were validated against experimental data, with mesh sensitivity analyzed at a wind speed of 3 m/s. A dataset of 300 cases, involving 100 hypothetical buildings and three wind speeds (3, 4, and 5 m/s), was generated to train the ML model. A multi-output regression model was proposed to effectively predict key parameters—wind velocity, turbulence intensity, and CO₂ mass fraction—in the selected urban domain. The Random Forest algorithm, which best represented the CFD results, was selected for model development. The ML model demonstrated high efficiency on new data, achieving 88-96% accuracy. This work offers a fast and precise prediction tool, valuable for urban design and related applications.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;