Matthew Rigge , Brett Bunde , Sarah E. McCord , Georgia Harrison , Timothy J. Assal , James L. Smith
{"title":"Spatial Scale Dependence of Error in Fractional Component Cover Maps","authors":"Matthew Rigge , Brett Bunde , Sarah E. McCord , Georgia Harrison , Timothy J. Assal , James L. Smith","doi":"10.1016/j.rama.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>Geospatial products such as fractional vegetation cover maps often report overall, pixel-wise accuracy, but decision-making with these products often occurs at coarser scales. As such, data users often desire guidance on the appropriate spatial scale to apply these data. We worked toward establishing this guidance by assessing RCMAP (Rangeland Condition Monitoring Assessment and Projection) accuracy relative to a series of high-resolution predictions of component cover. We scale the 2-m and RCMAP predictions to various focal window sizes scales ranging from 30 to 1 500 m using focal averaging. We also evaluated variation in scaling effects on error at ecoregion and pasture (mean area of 1 050 ha) scales. Our results demonstrate increased accuracy at broader windows, across all components, and most increases in accuracy level off at ∼200–600 m scales. At the scale with highest accuracy, cross-component average correlation (<em>r</em>) increased by 6.5%, and root mean square error (RMSE) was reduced 46.4% relative to 30-m scale data. Scaling-related improvements to accuracy were greatest in components such as shrub and tree with more spatially heterogeneous cover and in ecoregions with more spatially heterogenous cover. When components were aggregated at the pasture scale, <em>r</em> increased 10% and RMSE decreased 34.3% on average relative to the 30-m scale. Our results provide empirical data on the scale dependence of error, which fractional cover data users may consider alongside their needs when using these data. Although the general principle remains that remotely sensed products are intended to address landscape-scale questions, our analysis indicates that applying data at finer than landscape spatial scales and grouping even a handful of pixels resulted in lowered error compared to pixel-level comparisons. Our results quantify the trade-offs between data granularity and error related to scale for fractional vegetation cover.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":"99 ","pages":"Pages 77-87"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Ecology & Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1550742425000053","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Geospatial products such as fractional vegetation cover maps often report overall, pixel-wise accuracy, but decision-making with these products often occurs at coarser scales. As such, data users often desire guidance on the appropriate spatial scale to apply these data. We worked toward establishing this guidance by assessing RCMAP (Rangeland Condition Monitoring Assessment and Projection) accuracy relative to a series of high-resolution predictions of component cover. We scale the 2-m and RCMAP predictions to various focal window sizes scales ranging from 30 to 1 500 m using focal averaging. We also evaluated variation in scaling effects on error at ecoregion and pasture (mean area of 1 050 ha) scales. Our results demonstrate increased accuracy at broader windows, across all components, and most increases in accuracy level off at ∼200–600 m scales. At the scale with highest accuracy, cross-component average correlation (r) increased by 6.5%, and root mean square error (RMSE) was reduced 46.4% relative to 30-m scale data. Scaling-related improvements to accuracy were greatest in components such as shrub and tree with more spatially heterogeneous cover and in ecoregions with more spatially heterogenous cover. When components were aggregated at the pasture scale, r increased 10% and RMSE decreased 34.3% on average relative to the 30-m scale. Our results provide empirical data on the scale dependence of error, which fractional cover data users may consider alongside their needs when using these data. Although the general principle remains that remotely sensed products are intended to address landscape-scale questions, our analysis indicates that applying data at finer than landscape spatial scales and grouping even a handful of pixels resulted in lowered error compared to pixel-level comparisons. Our results quantify the trade-offs between data granularity and error related to scale for fractional vegetation cover.
期刊介绍:
Rangeland Ecology & Management publishes all topics-including ecology, management, socioeconomic and policy-pertaining to global rangelands. The journal''s mission is to inform academics, ecosystem managers and policy makers of science-based information to promote sound rangeland stewardship. Author submissions are published in five manuscript categories: original research papers, high-profile forum topics, concept syntheses, as well as research and technical notes.
Rangelands represent approximately 50% of the Earth''s land area and provision multiple ecosystem services for large human populations. This expansive and diverse land area functions as coupled human-ecological systems. Knowledge of both social and biophysical system components and their interactions represent the foundation for informed rangeland stewardship. Rangeland Ecology & Management uniquely integrates information from multiple system components to address current and pending challenges confronting global rangelands.