Spatial Scale Dependence of Error in Fractional Component Cover Maps

IF 2.4 3区 环境科学与生态学 Q2 ECOLOGY Rangeland Ecology & Management Pub Date : 2025-02-14 DOI:10.1016/j.rama.2025.01.004
Matthew Rigge , Brett Bunde , Sarah E. McCord , Georgia Harrison , Timothy J. Assal , James L. Smith
{"title":"Spatial Scale Dependence of Error in Fractional Component Cover Maps","authors":"Matthew Rigge ,&nbsp;Brett Bunde ,&nbsp;Sarah E. McCord ,&nbsp;Georgia Harrison ,&nbsp;Timothy J. Assal ,&nbsp;James L. Smith","doi":"10.1016/j.rama.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>Geospatial products such as fractional vegetation cover maps often report overall, pixel-wise accuracy, but decision-making with these products often occurs at coarser scales. As such, data users often desire guidance on the appropriate spatial scale to apply these data. We worked toward establishing this guidance by assessing RCMAP (Rangeland Condition Monitoring Assessment and Projection) accuracy relative to a series of high-resolution predictions of component cover. We scale the 2-m and RCMAP predictions to various focal window sizes scales ranging from 30 to 1 500 m using focal averaging. We also evaluated variation in scaling effects on error at ecoregion and pasture (mean area of 1 050 ha) scales. Our results demonstrate increased accuracy at broader windows, across all components, and most increases in accuracy level off at ∼200–600 m scales. At the scale with highest accuracy, cross-component average correlation (<em>r</em>) increased by 6.5%, and root mean square error (RMSE) was reduced 46.4% relative to 30-m scale data. Scaling-related improvements to accuracy were greatest in components such as shrub and tree with more spatially heterogeneous cover and in ecoregions with more spatially heterogenous cover. When components were aggregated at the pasture scale, <em>r</em> increased 10% and RMSE decreased 34.3% on average relative to the 30-m scale. Our results provide empirical data on the scale dependence of error, which fractional cover data users may consider alongside their needs when using these data. Although the general principle remains that remotely sensed products are intended to address landscape-scale questions, our analysis indicates that applying data at finer than landscape spatial scales and grouping even a handful of pixels resulted in lowered error compared to pixel-level comparisons. Our results quantify the trade-offs between data granularity and error related to scale for fractional vegetation cover.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":"99 ","pages":"Pages 77-87"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Ecology & Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1550742425000053","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Geospatial products such as fractional vegetation cover maps often report overall, pixel-wise accuracy, but decision-making with these products often occurs at coarser scales. As such, data users often desire guidance on the appropriate spatial scale to apply these data. We worked toward establishing this guidance by assessing RCMAP (Rangeland Condition Monitoring Assessment and Projection) accuracy relative to a series of high-resolution predictions of component cover. We scale the 2-m and RCMAP predictions to various focal window sizes scales ranging from 30 to 1 500 m using focal averaging. We also evaluated variation in scaling effects on error at ecoregion and pasture (mean area of 1 050 ha) scales. Our results demonstrate increased accuracy at broader windows, across all components, and most increases in accuracy level off at ∼200–600 m scales. At the scale with highest accuracy, cross-component average correlation (r) increased by 6.5%, and root mean square error (RMSE) was reduced 46.4% relative to 30-m scale data. Scaling-related improvements to accuracy were greatest in components such as shrub and tree with more spatially heterogeneous cover and in ecoregions with more spatially heterogenous cover. When components were aggregated at the pasture scale, r increased 10% and RMSE decreased 34.3% on average relative to the 30-m scale. Our results provide empirical data on the scale dependence of error, which fractional cover data users may consider alongside their needs when using these data. Although the general principle remains that remotely sensed products are intended to address landscape-scale questions, our analysis indicates that applying data at finer than landscape spatial scales and grouping even a handful of pixels resulted in lowered error compared to pixel-level comparisons. Our results quantify the trade-offs between data granularity and error related to scale for fractional vegetation cover.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Rangeland Ecology & Management
Rangeland Ecology & Management 农林科学-环境科学
CiteScore
4.60
自引率
13.00%
发文量
87
审稿时长
12-24 weeks
期刊介绍: Rangeland Ecology & Management publishes all topics-including ecology, management, socioeconomic and policy-pertaining to global rangelands. The journal''s mission is to inform academics, ecosystem managers and policy makers of science-based information to promote sound rangeland stewardship. Author submissions are published in five manuscript categories: original research papers, high-profile forum topics, concept syntheses, as well as research and technical notes. Rangelands represent approximately 50% of the Earth''s land area and provision multiple ecosystem services for large human populations. This expansive and diverse land area functions as coupled human-ecological systems. Knowledge of both social and biophysical system components and their interactions represent the foundation for informed rangeland stewardship. Rangeland Ecology & Management uniquely integrates information from multiple system components to address current and pending challenges confronting global rangelands.
期刊最新文献
Geospatial Decision Support System for Urban and Rural Aquifer Resilience: Integrating Remote Sensing-Based Rangeland Analysis With Groundwater Quality Assessment Quantifying Regional Ecological Dynamics Using Agency Monitoring Data, Ecological Site Descriptions, and Ecological Site Groups Agent-Based Modeling as a Tool for Ecological Comanagement of Grazing Lands Decadal Dynamics of Rangeland Cover Using Remote Sensing and Machine Learning Approach Spatial Scale Dependence of Error in Fractional Component Cover Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1