Kendall J. Yetter , Kyle Jung , Andrew Chuang , Michael D. Sangid , William LePage
{"title":"Surface smoothing for laser powder-bed Ti-6Al-4V by a transient liquid phase","authors":"Kendall J. Yetter , Kyle Jung , Andrew Chuang , Michael D. Sangid , William LePage","doi":"10.1016/j.matdes.2025.113689","DOIUrl":null,"url":null,"abstract":"<div><div>Surface roughness is the primary driver of fatigue for additively manufactured metals. To address surface roughness, this work introduces a new method to smooth features beyond line-of-sight without material removal. The method applies a coating that triggers local surface remelting by activating a eutectic reaction during heat treatment. The associated liquid phase then wets and isothermally solidifies into a smoother surface. For Ti-6Al-4V fabricated with laser powder bed fusion, samples with and without TLP smoothing (using a Cu coating) were characterized with a suite of techniques, including mechanical testing, electron backscatter diffraction, synchrotron X-ray tomography, and fractography. TLP smoothing reduced surface roughness by 80% and amplified compressive residual stress at the surface by about 50%. With statistically equivalent virtual microstructures, crystal plasticity scrutinized the roles of phases, porosity, and surface roughness. Although the tensile strain-to-failure was reduced to 1% strain, the TLP smoothing process increased high-cycle fatigue strength by about 20% compared to control samples, pointing to future opportunities to optimize the new process through various coating compositions and heat treatment schedules. Overall, this work establishes a new paradigm for treating surfaces of materials for smoothness and compressive residual stress.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"251 ","pages":"Article 113689"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525001091","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface roughness is the primary driver of fatigue for additively manufactured metals. To address surface roughness, this work introduces a new method to smooth features beyond line-of-sight without material removal. The method applies a coating that triggers local surface remelting by activating a eutectic reaction during heat treatment. The associated liquid phase then wets and isothermally solidifies into a smoother surface. For Ti-6Al-4V fabricated with laser powder bed fusion, samples with and without TLP smoothing (using a Cu coating) were characterized with a suite of techniques, including mechanical testing, electron backscatter diffraction, synchrotron X-ray tomography, and fractography. TLP smoothing reduced surface roughness by 80% and amplified compressive residual stress at the surface by about 50%. With statistically equivalent virtual microstructures, crystal plasticity scrutinized the roles of phases, porosity, and surface roughness. Although the tensile strain-to-failure was reduced to 1% strain, the TLP smoothing process increased high-cycle fatigue strength by about 20% compared to control samples, pointing to future opportunities to optimize the new process through various coating compositions and heat treatment schedules. Overall, this work establishes a new paradigm for treating surfaces of materials for smoothness and compressive residual stress.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.