Kuo-Ting Ho , Fang-Yeh Chu , Yi-Kai Lin , Ho-Hsun Chin , Shun-Chun Yang , Ching-Ping Yang , Yih-Hsin Chang
{"title":"Interleukin-4 ameliorates macrophage lipid stress through promoting cholesterol efflux and lipid homeostasis","authors":"Kuo-Ting Ho , Fang-Yeh Chu , Yi-Kai Lin , Ho-Hsun Chin , Shun-Chun Yang , Ching-Ping Yang , Yih-Hsin Chang","doi":"10.1016/j.cyto.2025.156869","DOIUrl":null,"url":null,"abstract":"<div><div>Over-nutrition and lipid metabolic abnormalities are correlated with obesity and type 2 diabetes mellitus (T2DM). Individuals with long-term hyperglycemia and dyslipidemia are susceptible to life-threatening complications such as atherosclerosis. Excess amounts of modified low density lipoprotein (mLDL) attract circulating monocytes to resident at arterial wall and differentiate into pro-inflammatory M1 macrophages. M1 cells uptake mLDL through scavenger receptors-mediated endocytosis, leading to increased lipids influx, cholesterol accumulation and foam cell formation. Besides, macrophages are attracted and infiltrated into the hypertrophic adipose tissue to mediate microenvironmental lipid metabolism. Our previous studies demonstrate that anti-inflammatory interleukin-4 (IL-4) regulates lipid metabolism by inhibiting lipid accumulation and promoting lipolysis of mature adipocytes. The effects of IL-4-polarized M2 macrophages on 3T3-L1 adipogenesis and macrophage-adipocyte interaction were explored in the present study. Our results showed lipid deposits and lipid droplets (LDs)-anchored perilipin of adipocytes cultured in IL-4-polarized M2-conditioned medium (M2-CM) were decreased, while adipogenesis-driving transcription factors and critical lipid metabolic enzymes remained unaffected. It indicates that M2-secreted mediators down-regulate lipid deposits and LDs formation in late adipogenic phase rather than interfering early programming phase and lipid synthesis machinery. In addition, IL-4 reduced intracellular lipid loads by up-regulating cholesterol efflux ATP-binding cassette transporter A1 (ABCA1) and ABCG1 despite cholesterol influx CD36 was also elevated. Accordingly, IL-4 shows beneficial effects to prevent atherosclerosis via promoting catabolism of the internalized lipids and cholesterol efflux, thus efficiently reduces lipid overload and foam cell formation. These findings illustrate novel roles and protective function of IL-4 to reduce the risk of atherosclerosis incidence by efficiently promoting macrophage cholesterol efflux and lipid homeostasis.</div></div>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":"188 ","pages":"Article 156869"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104346662500016X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over-nutrition and lipid metabolic abnormalities are correlated with obesity and type 2 diabetes mellitus (T2DM). Individuals with long-term hyperglycemia and dyslipidemia are susceptible to life-threatening complications such as atherosclerosis. Excess amounts of modified low density lipoprotein (mLDL) attract circulating monocytes to resident at arterial wall and differentiate into pro-inflammatory M1 macrophages. M1 cells uptake mLDL through scavenger receptors-mediated endocytosis, leading to increased lipids influx, cholesterol accumulation and foam cell formation. Besides, macrophages are attracted and infiltrated into the hypertrophic adipose tissue to mediate microenvironmental lipid metabolism. Our previous studies demonstrate that anti-inflammatory interleukin-4 (IL-4) regulates lipid metabolism by inhibiting lipid accumulation and promoting lipolysis of mature adipocytes. The effects of IL-4-polarized M2 macrophages on 3T3-L1 adipogenesis and macrophage-adipocyte interaction were explored in the present study. Our results showed lipid deposits and lipid droplets (LDs)-anchored perilipin of adipocytes cultured in IL-4-polarized M2-conditioned medium (M2-CM) were decreased, while adipogenesis-driving transcription factors and critical lipid metabolic enzymes remained unaffected. It indicates that M2-secreted mediators down-regulate lipid deposits and LDs formation in late adipogenic phase rather than interfering early programming phase and lipid synthesis machinery. In addition, IL-4 reduced intracellular lipid loads by up-regulating cholesterol efflux ATP-binding cassette transporter A1 (ABCA1) and ABCG1 despite cholesterol influx CD36 was also elevated. Accordingly, IL-4 shows beneficial effects to prevent atherosclerosis via promoting catabolism of the internalized lipids and cholesterol efflux, thus efficiently reduces lipid overload and foam cell formation. These findings illustrate novel roles and protective function of IL-4 to reduce the risk of atherosclerosis incidence by efficiently promoting macrophage cholesterol efflux and lipid homeostasis.
期刊介绍:
The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
* Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors.
We will publish 3 major types of manuscripts:
1) Original manuscripts describing research results.
2) Basic and clinical reviews describing cytokine actions and regulation.
3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.