Kun Sun , Qiaoxuan Li , Qiance Liu , Jinchao Song , Menglin Dai , Xingjian Qian , Srinivasa Raghavendra Bhuvan Gummidi , Bailang Yu , Felix Creutzig , Gang Liu
{"title":"Urban fabric decoded: High-precision building material identification via deep learning and remote sensing","authors":"Kun Sun , Qiaoxuan Li , Qiance Liu , Jinchao Song , Menglin Dai , Xingjian Qian , Srinivasa Raghavendra Bhuvan Gummidi , Bailang Yu , Felix Creutzig , Gang Liu","doi":"10.1016/j.ese.2025.100538","DOIUrl":null,"url":null,"abstract":"<div><div>Precise identification and categorization of building materials are essential for informing strategies related to embodied carbon reduction, building retrofitting, and circularity in urban environments. However, existing building material databases are typically limited to individual projects or specific geographic areas, offering only approximate assessments. Acquiring large-scale and precise material data is hindered by inadequate records and financial constraints. Here, we introduce a novel automated framework that harnesses recent advances in sensing technology and deep learning to identify roof and facade materials using remote sensing data and Google Street View imagery. The model was initially trained and validated on Odense's comprehensive dataset and then extended to characterize building materials across Danish urban landscapes, including Copenhagen, Aarhus, and Aalborg. Our approach demonstrates the model's scalability and adaptability to different geographic contexts and architectural styles, providing high-resolution insights into material distribution across diverse building types and cities. These findings are pivotal for informing sustainable urban planning, revising building codes to lower carbon emissions, and optimizing retrofitting efforts to meet contemporary standards for energy efficiency and emission reductions.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100538"},"PeriodicalIF":14.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266649842500016X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Precise identification and categorization of building materials are essential for informing strategies related to embodied carbon reduction, building retrofitting, and circularity in urban environments. However, existing building material databases are typically limited to individual projects or specific geographic areas, offering only approximate assessments. Acquiring large-scale and precise material data is hindered by inadequate records and financial constraints. Here, we introduce a novel automated framework that harnesses recent advances in sensing technology and deep learning to identify roof and facade materials using remote sensing data and Google Street View imagery. The model was initially trained and validated on Odense's comprehensive dataset and then extended to characterize building materials across Danish urban landscapes, including Copenhagen, Aarhus, and Aalborg. Our approach demonstrates the model's scalability and adaptability to different geographic contexts and architectural styles, providing high-resolution insights into material distribution across diverse building types and cities. These findings are pivotal for informing sustainable urban planning, revising building codes to lower carbon emissions, and optimizing retrofitting efforts to meet contemporary standards for energy efficiency and emission reductions.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.