Dorsomorphin (DM) inhibits the ovarian development of Portunus trituberculatus by acting on the BMP signaling pathway

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology D-Genomics & Proteomics Pub Date : 2025-02-11 DOI:10.1016/j.cbd.2025.101440
Xiaocong Chen , Ce Shi , Yangfang Ye , Chunlin Wang , Ronghua Li , Huan Wang , Congcong Hou , Weiwei Song , Xinghong Xu , Changkao Mu
{"title":"Dorsomorphin (DM) inhibits the ovarian development of Portunus trituberculatus by acting on the BMP signaling pathway","authors":"Xiaocong Chen ,&nbsp;Ce Shi ,&nbsp;Yangfang Ye ,&nbsp;Chunlin Wang ,&nbsp;Ronghua Li ,&nbsp;Huan Wang ,&nbsp;Congcong Hou ,&nbsp;Weiwei Song ,&nbsp;Xinghong Xu ,&nbsp;Changkao Mu","doi":"10.1016/j.cbd.2025.101440","DOIUrl":null,"url":null,"abstract":"<div><div>Bone morphogenic proteins (BMPs) regulate animal growth, cell proliferation and differentiation. The BMP signaling pathway plays an important regulatory role during ovarian follicle development in mammals. However, related studies in crustaceans are limited. The focus of this study was the key gene of the BMP signaling pathway, the BMP type I receptor. <em>Portunus trituberculatus</em> was injected with different concentrations of dorsomorphin (DM) and observed for one month to identify the optimal effective concentration for interference with the BMP signaling pathway. Subsequent transcriptomics, proteomics, and metabolomics measurements were performed to identify the effects of BMP signaling on ovarian development in <em>P. trituberculatus</em>. A preliminary mechanism of action of the BMP signaling pathway in the regulation of ovarian development was revealed through combined multiomics analysis and lipid analysis. This study provides a theoretical basis for further exploration of the molecular mechanism regulating gonadal development in crustaceans.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"54 ","pages":"Article 101440"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25000280","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bone morphogenic proteins (BMPs) regulate animal growth, cell proliferation and differentiation. The BMP signaling pathway plays an important regulatory role during ovarian follicle development in mammals. However, related studies in crustaceans are limited. The focus of this study was the key gene of the BMP signaling pathway, the BMP type I receptor. Portunus trituberculatus was injected with different concentrations of dorsomorphin (DM) and observed for one month to identify the optimal effective concentration for interference with the BMP signaling pathway. Subsequent transcriptomics, proteomics, and metabolomics measurements were performed to identify the effects of BMP signaling on ovarian development in P. trituberculatus. A preliminary mechanism of action of the BMP signaling pathway in the regulation of ovarian development was revealed through combined multiomics analysis and lipid analysis. This study provides a theoretical basis for further exploration of the molecular mechanism regulating gonadal development in crustaceans.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
期刊最新文献
Transcriptome and lipidome integration unveils key mechanisms constraining bivalve larval sensitivity in an acidifying sea Comparative analysis of spleen structure, biochemical parameters, and transcriptome of adult and juvenile yellowfin tuna (Thunnus albacares) in the South China Sea Transcriptomic and metabolomic analyses provide insights into the energy metabolism and signaling regulation of byssus secretion in winged pearl oyster Pteria penguin Pyraclostrobin-induced toxic effects in the gills of common carp (Cyprinus carpio L.): Mechanisms unveiled through biochemical, molecular, and metabolomic analyses Dorsomorphin (DM) inhibits the ovarian development of Portunus trituberculatus by acting on the BMP signaling pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1