Qinhao Sun , Jinhuan Zhong , Pengfei Shi , Huajie Xu , Yang Wang
{"title":"An improved reactive force field parameter optimization framework based on simulated annealing and particle swarm optimization algorithms","authors":"Qinhao Sun , Jinhuan Zhong , Pengfei Shi , Huajie Xu , Yang Wang","doi":"10.1016/j.commatsci.2025.113776","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic-scale simulations are important tools for microscopic phenomena study and material design, especially the cost-effective and large-scale reactive force field (ReaxFF). However, the poor transferability and tedious training process of ReaxFF parameters constrain its accuracy and application, urgently requiring more efficient automatic optimization methods. In this study, we propose a multi-objective optimization method that combines simulated annealing algorithm (SA) and particle swarm optimization algorithm (PSO) to optimize the ReaxFF parameters. Moreover, we innovatively introduce a concentrated attention mechanism (CAM) to improve the accuracy of parameter optimization. Finally, this study selects the H/S system as the testing target to evaluate the accuracy and efficiency of the above algorithm. It is found that our algorithm is faster and more accurate than traditional metaheuristic methods. Our automated optimization scheme efficiently optimizes ReaxFF parameters, providing crucial support for atomic-scale simulations.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"251 ","pages":"Article 113776"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625001193","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic-scale simulations are important tools for microscopic phenomena study and material design, especially the cost-effective and large-scale reactive force field (ReaxFF). However, the poor transferability and tedious training process of ReaxFF parameters constrain its accuracy and application, urgently requiring more efficient automatic optimization methods. In this study, we propose a multi-objective optimization method that combines simulated annealing algorithm (SA) and particle swarm optimization algorithm (PSO) to optimize the ReaxFF parameters. Moreover, we innovatively introduce a concentrated attention mechanism (CAM) to improve the accuracy of parameter optimization. Finally, this study selects the H/S system as the testing target to evaluate the accuracy and efficiency of the above algorithm. It is found that our algorithm is faster and more accurate than traditional metaheuristic methods. Our automated optimization scheme efficiently optimizes ReaxFF parameters, providing crucial support for atomic-scale simulations.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.