{"title":"Structural dependence of quantum transport properties on topological nodal-line semimetal bilayer borophene","authors":"C.J. Páez-González , C.E. Ardila-Gutiérrez , D.A. Bahamon","doi":"10.1016/j.commatsci.2025.113757","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the electronic and transport properties of bilayer borophene nanoribbons. In the first part, a four-orbital tight-binding model is derived by fitting the <em>ab initio</em> band structure. The transport properties of armchair and zigzag bilayer borophene nanoribbons are then analyzed, both with and without periodic boundary conditions. In both scenarios, the nodal line causes conductance to increase with width and exhibit oscillations in narrow nanoribbons. Additionally, plots of current and charge density reveal that edge states have a more pronounced impact in narrower nanoribbons. Finally, uniaxial tensile strain is introduced as a tool to engineer the number of available transport channels.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"251 ","pages":"Article 113757"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625001004","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents the electronic and transport properties of bilayer borophene nanoribbons. In the first part, a four-orbital tight-binding model is derived by fitting the ab initio band structure. The transport properties of armchair and zigzag bilayer borophene nanoribbons are then analyzed, both with and without periodic boundary conditions. In both scenarios, the nodal line causes conductance to increase with width and exhibit oscillations in narrow nanoribbons. Additionally, plots of current and charge density reveal that edge states have a more pronounced impact in narrower nanoribbons. Finally, uniaxial tensile strain is introduced as a tool to engineer the number of available transport channels.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.