A multiscale approach to structural relaxation and diffusion in metallic glasses

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2025-02-16 DOI:10.1016/j.commatsci.2025.113759
Anh D. Phan , Do T. Nga , Ngo T. Que , Hailong Peng , Thongchanh Norhourmour , Le M. Tu
{"title":"A multiscale approach to structural relaxation and diffusion in metallic glasses","authors":"Anh D. Phan ,&nbsp;Do T. Nga ,&nbsp;Ngo T. Que ,&nbsp;Hailong Peng ,&nbsp;Thongchanh Norhourmour ,&nbsp;Le M. Tu","doi":"10.1016/j.commatsci.2025.113759","DOIUrl":null,"url":null,"abstract":"<div><div>Metallic glasses are promising materials with unique mechanical and thermal properties, but their atomic-scale dynamics remain challenging to understand. In this work, we develop a unified approach to investigate the glass transition and structural relaxation in CoCrNi, <figure><img></figure> , <figure><img></figure> , and <figure><img></figure> metallic glasses. Molecular dynamics (MD) simulation is employed to analyze the radial distribution function at different temperatures and accurately determine the glass transition temperature. We then combine this temperature with the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to predict the temperature dependence of the structural relaxation time, <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. By connecting <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> to the diffusion constant, the ECNLE predictions of <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> can be compared with those calculated from MD simulations or estimated based on the diffusion constant. By combining atomistic simulation with force-level statistical mechanics, our multiscale approach offers deeper insights into relaxation dynamics and diffusion across various timescales. The relationship between the glass transition and the liquidus temperature is elucidated. This study enhances understanding of the glassy dynamics and properties in complex amorphous materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"251 ","pages":"Article 113759"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625001028","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic glasses are promising materials with unique mechanical and thermal properties, but their atomic-scale dynamics remain challenging to understand. In this work, we develop a unified approach to investigate the glass transition and structural relaxation in CoCrNi,
,
, and
metallic glasses. Molecular dynamics (MD) simulation is employed to analyze the radial distribution function at different temperatures and accurately determine the glass transition temperature. We then combine this temperature with the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to predict the temperature dependence of the structural relaxation time, τα(T). By connecting τα(T) to the diffusion constant, the ECNLE predictions of τα(T) can be compared with those calculated from MD simulations or estimated based on the diffusion constant. By combining atomistic simulation with force-level statistical mechanics, our multiscale approach offers deeper insights into relaxation dynamics and diffusion across various timescales. The relationship between the glass transition and the liquidus temperature is elucidated. This study enhances understanding of the glassy dynamics and properties in complex amorphous materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属玻璃是一种前景广阔的材料,具有独特的机械和热性能,但要了解其原子尺度的动态变化仍然具有挑战性。在这项工作中,我们开发了一种统一的方法来研究 CoCrNi、Ⅳ和Ⅴ金属玻璃的玻璃化转变和结构松弛。我们采用分子动力学(MD)模拟来分析不同温度下的径向分布函数,并准确确定玻璃化转变温度。然后,我们将此温度与弹性集合非线性朗格文方程 (ECNLE) 理论相结合,预测结构弛豫时间 τα(T) 的温度依赖性。通过将 τα(T) 与扩散常数联系起来,ECNLE 预测的 τα(T) 可以与 MD 模拟计算或根据扩散常数估算的 τα(T) 进行比较。通过将原子模拟与力级统计力学相结合,我们的多尺度方法可以更深入地了解各种时间尺度上的弛豫动力学和扩散。玻璃化转变与液相温度之间的关系也得到了阐明。这项研究加深了人们对复杂无定形材料的玻璃化动力学和性质的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Atomistic simulation of Guinier–Preston zone nucleation kinetics in Al–Cu alloys: A neural network-driven kinetic Monte Carlo approach Atomic-scale understanding of interfacial structure and chemistry effects on hydrogen trapping and migration in Cu-precipitation-strengthened steels Structural dependence of quantum transport properties on topological nodal-line semimetal bilayer borophene Concavity-based local erosion and sphere-size-based local dilation applied to lithium-ion battery electrode microstructures for particle identification A novel phase of germagraphene — Quasi-direct bandgap and anisotropic carrier mobility with potential optoelectronic response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1