A review of measurements and model simulations of atmospheric nitrous acid

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment Pub Date : 2025-02-09 DOI:10.1016/j.atmosenv.2025.121094
Like Wang , Jiajue Chai , Benjamin Gaubert , Yaoxian Huang
{"title":"A review of measurements and model simulations of atmospheric nitrous acid","authors":"Like Wang ,&nbsp;Jiajue Chai ,&nbsp;Benjamin Gaubert ,&nbsp;Yaoxian Huang","doi":"10.1016/j.atmosenv.2025.121094","DOIUrl":null,"url":null,"abstract":"<div><div>Ambient nitrous acid (HONO) plays a crucial role in the atmosphere's oxidative capacity, significantly impacting air quality and climate. This study reviews the current understanding of HONO formation mechanisms, including in-situ and vertical gradient measurements, as well as the temporal, spatial, and vertical characteristics of HONO and its modeling approaches. HONO concentrations exhibit significant diurnal variation based on sources and sinks in different environments. Typically, concentrations are higher near the ground and decrease with altitude. Additionally, this study examines the incorporation of contemporary HONO chemical mechanisms into box models, regional and global chemical transport models (CTMs), and chemistry-climate models. Models often underestimate observations due to uncertainties in heterogeneous HONO formation and varying measurement techniques. Finally, this review identifies key challenges for future HONO measurements and modeling efforts. Significant opportunities remain to enhance our fundamental understanding of HONO. Precision and accuracy are important for advancing HONO observation measurement techniques. Simultaneously, the representation of HONO in state-of-the-art models helps us better quantify atmospheric oxidation capacity and air quality impacts.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"347 ","pages":"Article 121094"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135223102500069X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ambient nitrous acid (HONO) plays a crucial role in the atmosphere's oxidative capacity, significantly impacting air quality and climate. This study reviews the current understanding of HONO formation mechanisms, including in-situ and vertical gradient measurements, as well as the temporal, spatial, and vertical characteristics of HONO and its modeling approaches. HONO concentrations exhibit significant diurnal variation based on sources and sinks in different environments. Typically, concentrations are higher near the ground and decrease with altitude. Additionally, this study examines the incorporation of contemporary HONO chemical mechanisms into box models, regional and global chemical transport models (CTMs), and chemistry-climate models. Models often underestimate observations due to uncertainties in heterogeneous HONO formation and varying measurement techniques. Finally, this review identifies key challenges for future HONO measurements and modeling efforts. Significant opportunities remain to enhance our fundamental understanding of HONO. Precision and accuracy are important for advancing HONO observation measurement techniques. Simultaneously, the representation of HONO in state-of-the-art models helps us better quantify atmospheric oxidation capacity and air quality impacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
期刊最新文献
Editorial Board Insights into bacteria characteristics and potential pathogen in rural indoor households in Fenwei Plain, China Weather history-based parameterization of the G-93 isoprene emission formula for the tropical plant Ficus septica Explainable deep learning hybrid modeling framework for total suspended particles concentrations prediction Assessment of recent mercury trends associated with the National Atmospheric Deposition Program Mercury Litterfall Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1