Jan Magnusson , Bertrand Cluzet , Louis Quéno , Rebecca Mott , Moritz Oberrauch , Giulia Mazzotti , Christoph Marty , Tobias Jonas
{"title":"Evaluating methods to estimate the water equivalent of new snow from daily snow depth recordings","authors":"Jan Magnusson , Bertrand Cluzet , Louis Quéno , Rebecca Mott , Moritz Oberrauch , Giulia Mazzotti , Christoph Marty , Tobias Jonas","doi":"10.1016/j.coldregions.2025.104435","DOIUrl":null,"url":null,"abstract":"<div><div>The water equivalent of new snow (HNW) plays a crucial role in various fields, including hydrological modeling, avalanche forecasting, and assessing snow loads on structures. However, in contrast to snow depth (HS), obtaining HNW measurements is challenging as well as time-consuming and is hence rarely measured. Therefore, we assess the reliability of two semi-empirical methods, HS2SWE and ΔSNOW, for estimating HNW. These methods are designed to simulate continuous water equivalent of the snowpack (SWE) from daily HS only, with changes in SWE yielding daily HNW estimates. We compare both parametric methods against HNW predictions from a physics-based snow model (FSM2oshd) that integrates daily HS recordings using data assimilation. Our findings reveal that all methods exhibit similar performance, with relative biases of less than ∼3 % in replicating SWE observations commonly used for model evaluations. However, the ΔSNOW model tends to underestimate daily HNW by ∼17 %, whereas HS2SWE and FSM2oshd combined with a particle filter data assimilation scheme provide nearly unbiased estimates, with relative biases below ∼5 %. In contrast to the parsimonious parametric methods, we show that the physics-based approach can yield information about unobserved variables, such as total solid precipitation amounts, that may differ from HNW due to concurrent melt. Overall, our results underscore the potential of utilizing commonly available daily HS data in conjunction with appropriate modeling techniques to provide valuable insights into snow accumulation processes. Our study demonstrates that daily SWE observations or supplementary measurements like HNW are important for validating the day-to-day accuracy of simulations and should ideally already be incorporated during the calibration and development of models.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"233 ","pages":"Article 104435"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X25000187","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The water equivalent of new snow (HNW) plays a crucial role in various fields, including hydrological modeling, avalanche forecasting, and assessing snow loads on structures. However, in contrast to snow depth (HS), obtaining HNW measurements is challenging as well as time-consuming and is hence rarely measured. Therefore, we assess the reliability of two semi-empirical methods, HS2SWE and ΔSNOW, for estimating HNW. These methods are designed to simulate continuous water equivalent of the snowpack (SWE) from daily HS only, with changes in SWE yielding daily HNW estimates. We compare both parametric methods against HNW predictions from a physics-based snow model (FSM2oshd) that integrates daily HS recordings using data assimilation. Our findings reveal that all methods exhibit similar performance, with relative biases of less than ∼3 % in replicating SWE observations commonly used for model evaluations. However, the ΔSNOW model tends to underestimate daily HNW by ∼17 %, whereas HS2SWE and FSM2oshd combined with a particle filter data assimilation scheme provide nearly unbiased estimates, with relative biases below ∼5 %. In contrast to the parsimonious parametric methods, we show that the physics-based approach can yield information about unobserved variables, such as total solid precipitation amounts, that may differ from HNW due to concurrent melt. Overall, our results underscore the potential of utilizing commonly available daily HS data in conjunction with appropriate modeling techniques to provide valuable insights into snow accumulation processes. Our study demonstrates that daily SWE observations or supplementary measurements like HNW are important for validating the day-to-day accuracy of simulations and should ideally already be incorporated during the calibration and development of models.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.