{"title":"Establishment of endogenous canine MUC1 knock-out MDCKII cells using CRISPR-Cas9 and evaluation of drug permeation","authors":"Hisanao Kishimoto , Kaori Miyazaki , Moeko Omori , Kei Higuchi , Yoshiyuki Shirasaka , Katsuhisa Inoue","doi":"10.1016/j.dmpk.2025.101051","DOIUrl":null,"url":null,"abstract":"<div><div>Most orally administered drugs are absorbed by simple diffusion across the intestinal epithelium. Monolayers of MDCKII cells and parallel artificial membrane permeability assay are widely used to evaluate simple diffusion as an <em>in vitro</em> model; however, these models do not account for the contribution of mucus glycoprotein, which may play a significant role in drug permeation. We focused on the role of MUC1, a membrane-bound mucin that is found on the luminal surface of the gastrointestinal epithelium, in the simple diffusion of lipophilic drugs. We generated endogenous canine Mdr1 (cMdr1) and Muc1 (cMuc1) knock-out MDCKII cells by genomic editing and evaluated the effect of cMuc1 on the simple diffusion of various drugs. The absence of cMuc1 significantly increased the membrane permeation of lipophilic drugs, such as griseofulvin as well as paclitaxel and rhodamine 123, substrates of the MDR1 efflux transporter, which suggests that cMuc1 is one of the key factors that modulate the membrane permeation of these drugs. Taken together, we successfully established MDCKII cell lines with a complete knock-out of endogenous cMuc1 and cMdr1 expressions. This provides a novel <em>in vitro</em> model system for studying the mechanisms underlying drug absorption and transport, with potential applications for drug development.</div></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"61 ","pages":"Article 101051"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347436725000011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Most orally administered drugs are absorbed by simple diffusion across the intestinal epithelium. Monolayers of MDCKII cells and parallel artificial membrane permeability assay are widely used to evaluate simple diffusion as an in vitro model; however, these models do not account for the contribution of mucus glycoprotein, which may play a significant role in drug permeation. We focused on the role of MUC1, a membrane-bound mucin that is found on the luminal surface of the gastrointestinal epithelium, in the simple diffusion of lipophilic drugs. We generated endogenous canine Mdr1 (cMdr1) and Muc1 (cMuc1) knock-out MDCKII cells by genomic editing and evaluated the effect of cMuc1 on the simple diffusion of various drugs. The absence of cMuc1 significantly increased the membrane permeation of lipophilic drugs, such as griseofulvin as well as paclitaxel and rhodamine 123, substrates of the MDR1 efflux transporter, which suggests that cMuc1 is one of the key factors that modulate the membrane permeation of these drugs. Taken together, we successfully established MDCKII cell lines with a complete knock-out of endogenous cMuc1 and cMdr1 expressions. This provides a novel in vitro model system for studying the mechanisms underlying drug absorption and transport, with potential applications for drug development.
期刊介绍:
DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows:
- Drug metabolism / Biotransformation
- Pharmacokinetics and pharmacodynamics
- Toxicokinetics and toxicodynamics
- Drug-drug interaction / Drug-food interaction
- Mechanism of drug absorption and disposition (including transporter)
- Drug delivery system
- Clinical pharmacy and pharmacology
- Analytical method
- Factors affecting drug metabolism and transport
- Expression of genes for drug-metabolizing enzymes and transporters
- Pharmacogenetics and pharmacogenomics
- Pharmacoepidemiology.