{"title":"Validation of a quantitation method for conjugated quercetin in human plasma","authors":"Yui Sudaka , Takafumi Mitsui , Hiroaki Kida , Mst. Julia Sultana , Miyu Nishikawa , Shinichi Ikushiro , Naoto Yamaguchi","doi":"10.1016/j.jpba.2025.116738","DOIUrl":null,"url":null,"abstract":"<div><div>Since the type of glycoside affects the pharmacokinetic profile of the aglycon after oral ingestion of quercetin glycosides, clinical studies on the pharmacokinetics of quercetin glycosides are required. However, a suitable method to determine the concentrations of quercetin phase II metabolites in human plasma and urine is lacking. Therefore, we developed and validated an LC-MS method for the quantitation of conjugated quercetin using relevant reference standards, including hetero-conjugates with glucuronic acid and sulfonic acid (QC-GA/S). Quercetin hetero-conjugates extracted from rat serum were used for the method development, and reference standards were biosynthesized for the quantitation. The use of a solid-phase extraction (SPE) column in a 96 well format enabled high-throughput analysis of up to 96 tests in a day, without compromising recovery and sensitivity. The SPE column with a weak anion exchange group contributed to the high recovery of QC-GA/S. The method was then validated, and its usefulness was confirmed using clinical samples. QC-GA/S was the predominant phase II quercetin metabolite after the ingestion of quercetin glucoside or quercetin supplements. Moreover, the two peaks of QC-GA/S found in human plasma and urine were isomers of QC-7GA/4’S, which has been reported as the predominant peak in rat plasma. If QC-GA/S in plasma is responsible for a physiological activity of quercetin, it is important to determine the concentration of each QC-GA/S isomer.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"258 ","pages":"Article 116738"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525000792","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since the type of glycoside affects the pharmacokinetic profile of the aglycon after oral ingestion of quercetin glycosides, clinical studies on the pharmacokinetics of quercetin glycosides are required. However, a suitable method to determine the concentrations of quercetin phase II metabolites in human plasma and urine is lacking. Therefore, we developed and validated an LC-MS method for the quantitation of conjugated quercetin using relevant reference standards, including hetero-conjugates with glucuronic acid and sulfonic acid (QC-GA/S). Quercetin hetero-conjugates extracted from rat serum were used for the method development, and reference standards were biosynthesized for the quantitation. The use of a solid-phase extraction (SPE) column in a 96 well format enabled high-throughput analysis of up to 96 tests in a day, without compromising recovery and sensitivity. The SPE column with a weak anion exchange group contributed to the high recovery of QC-GA/S. The method was then validated, and its usefulness was confirmed using clinical samples. QC-GA/S was the predominant phase II quercetin metabolite after the ingestion of quercetin glucoside or quercetin supplements. Moreover, the two peaks of QC-GA/S found in human plasma and urine were isomers of QC-7GA/4’S, which has been reported as the predominant peak in rat plasma. If QC-GA/S in plasma is responsible for a physiological activity of quercetin, it is important to determine the concentration of each QC-GA/S isomer.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.