Fourier transform infrared spectroscopy characterization of aging properties of graphene oxide modified asphalt binder

IF 3.2 3区 材料科学 Q2 ENGINEERING, CHEMICAL International Journal of Adhesion and Adhesives Pub Date : 2025-02-09 DOI:10.1016/j.ijadhadh.2025.103974
Teng Li , Kang Jiang , Kefei Liu , Quan Li
{"title":"Fourier transform infrared spectroscopy characterization of aging properties of graphene oxide modified asphalt binder","authors":"Teng Li ,&nbsp;Kang Jiang ,&nbsp;Kefei Liu ,&nbsp;Quan Li","doi":"10.1016/j.ijadhadh.2025.103974","DOIUrl":null,"url":null,"abstract":"<div><div>The fundamental reason why thermal-oxidative aging can greatly affect the physical properties, mechanical properties, rheological properties and durability of asphalt is that the molecular structure and colloidal structure of asphalt are changed due to volatilization, oxidation and spatial hardening. To study the possible chemical changes of graphene oxide (GO) modified asphalt after aging and reveal its action mechanism, this study analyzed how GO changes the process of thermal-oxidative aging of asphalt from the perspective of molecular structure, and evaluated the aging properties of GO modified asphalt by testing the content change of each characteristic functional group in asphalt after thermal-oxidative aging. The results show that GO can significantly increase the content of amide groups (0.0018 %) in the base asphalt, which in turn enhances the adhesion and toughness of asphalt, reduces the brittleness of asphalt and improves the bearing strength. The addition of GO effectively inhibited the increase of carboxylic acid and ketone content in asphalt caused by aging. Amide is the aging product of asphalt exposed to air, and the presence of amide promotes the formation of hydrogen bonds, which is more conducive to the miscibility of GO and asphalt. The modification effect of GO on base asphalt is better than SBS-modified asphalt. The results of AFM show that GO-modified asphalt has a better proportion of components and a more stable colloidal structure, and the adhesion performance of GO-modified asphalt is significantly improved. GO can obviously improve the aging resistance and slow down the aging rate of asphalt, indicating that GO can improve the pavement performance and extend the service life of asphalt pavement.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"139 ","pages":"Article 103974"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749625000417","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fundamental reason why thermal-oxidative aging can greatly affect the physical properties, mechanical properties, rheological properties and durability of asphalt is that the molecular structure and colloidal structure of asphalt are changed due to volatilization, oxidation and spatial hardening. To study the possible chemical changes of graphene oxide (GO) modified asphalt after aging and reveal its action mechanism, this study analyzed how GO changes the process of thermal-oxidative aging of asphalt from the perspective of molecular structure, and evaluated the aging properties of GO modified asphalt by testing the content change of each characteristic functional group in asphalt after thermal-oxidative aging. The results show that GO can significantly increase the content of amide groups (0.0018 %) in the base asphalt, which in turn enhances the adhesion and toughness of asphalt, reduces the brittleness of asphalt and improves the bearing strength. The addition of GO effectively inhibited the increase of carboxylic acid and ketone content in asphalt caused by aging. Amide is the aging product of asphalt exposed to air, and the presence of amide promotes the formation of hydrogen bonds, which is more conducive to the miscibility of GO and asphalt. The modification effect of GO on base asphalt is better than SBS-modified asphalt. The results of AFM show that GO-modified asphalt has a better proportion of components and a more stable colloidal structure, and the adhesion performance of GO-modified asphalt is significantly improved. GO can obviously improve the aging resistance and slow down the aging rate of asphalt, indicating that GO can improve the pavement performance and extend the service life of asphalt pavement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Adhesion and Adhesives
International Journal of Adhesion and Adhesives 工程技术-材料科学:综合
CiteScore
6.90
自引率
8.80%
发文量
200
审稿时长
8.3 months
期刊介绍: The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.
期刊最新文献
Impact of thermal and humidity conditions on structural epoxy adhesives during medium-term exposure Sericin and gentamicin-enhanced polyurethane-acrylate adhesives for superior adhesion, biocompatibility and antibacterial property Adhesive geometry dependence of JIS adhesive strength expressed as average stress and countermeasure based on ISSF Editorial Board Mechanical and adhesive properties of graphene-coated thermoset and thermoplastic aircraft composite materials by physical vapor deposition technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1